193 research outputs found

    Standing Variation and the Capacity for Change: Are Endocrine Phenotypes More Variable That Other Traits?

    Get PDF
    Circulating steroid hormone levels exhibit high variation both within and between individuals, leading some to hypothesize that these phenotypes are more variable than other morphological, physiological, and behavioral traits. This should have profound implications for the evolution of steroid signaling systems, but few studies have examined how endocrine variation compares to that of other traits or differs among populations. Here we provide such an analysis by first exploring how variation in three measures of corticosterone (CORT)—baseline, stress-induced, and post-dexamethasone injection—compares to variation in key traits characterizing morphology (wing length, mass), physiology (reactive oxygen metabolite concentration [d-ROMs] and antioxidant capacity), and behavior (provisioning rate) in two populations of tree swallow (Tachycineta bicolor). After controlling for measurement precision and within-individual variation, we found that only post-dex CORT was more variable than all other traits. Both baseline and stress-induced CORT exhibit higher variation than antioxidant capacity and provisioning rate, but not oxidative metabolite levels or wing length. Variation in post-dex CORT and d-ROMs was also elevated in the higher-latitude population in that inhabits a less predictable environment. We next studied how these patterns might play out on a macroevolutionary scale, assessing patterns of variation in baseline testosterone (T) and multiple non-endocrine traits (body length, mass, social display rate, and locomotion rate) across 17 species of Anolis lizards. At the macroevolutionary level, we found that circulating T levels and the rate of social display output are higher than other behavioral and morphological traits. Altogether, our results support the idea that within-population variability in steroid levels is substantial, but not exceptionally higher than many other traits that define animal phenotypes. As such, circulating steroid levels in free-living animals should be considered traits that exhibit similar levels of variability from individual to individual in a population

    Uptake and depuration of gold nanoparticles in Daphnia magna

    Get PDF
    This study presents a series of short-term studies (total duration 48 h) of uptake and depuration of engineered nanoparticles (ENP) in neonate Daphnia magna. Gold nanoparticles (Au NP) were used to study the influence of size, stabilizing agent and feeding on uptake and depuration kinetics and animal body burdens. 10 and 30 nm Au NP with different stabilizing agents [citrate (CIT) and mercaptoundecanoic acid (MUDA)] were tested in concentrations around 0.5 mg Au/L. Fast initial uptake was observed for all studied Au NP, with CIT stabilized Au NP showing similar rates independent of size and MUDA showing increased uptake for the smaller Au NP (MUDA 10 nm > CIT 10 nm, 30 nm > MUDA 30 nm). However, upon transfer to clean media no clear trend on depuration rates was found in terms of stabilizing agent or size. Independent of stabilizing agent, 10 nm Au NP resulted in higher residual whole-animal body burdens after 24 h depuration than 30 nm Au NP with residual body burdens about one order of magnitude higher of animals exposed to 10 nm Au NP. The presence of food (P. subcapitata) did not significantly affect the body burden after 24 h of exposure, but depuration was increased. While food addition is not necessary to ensure D. magna survival in the presented short-term test design, the influence of food on uptake and depuration kinetics is essential to consider in long term studies of ENP where food addition is necessary. This study demonstrates the feasibility of a short-term test design to assess the uptake and depuration of ENP in D. magna. The findings underlines that the assumptions behind the traditional way of quantifying bioconcentration are not fulfilled when ENPs are studied.Peer reviewed: YesNRC publication: Ye

    Multi-Locus Phylogeographic and Population Genetic Analysis of Anolis carolinensis: Historical Demography of a Genomic Model Species

    Get PDF
    The green anole (Anolis carolinensis) has been widely used as an animal model in physiology and neurobiology but has recently emerged as an important genomic model. The recent sequencing of its genome has shed new light on the evolution of vertebrate genomes and on the process that govern species diversification. Surprisingly, the patterns of genetic diversity within natural populations of this widespread and abundant North American lizard remain relatively unknown. In the present study, we use 10 novel nuclear DNA sequence loci (N = 62 to 152) and one mitochondrial locus (N = 226) to delimit green anole populations and infer their historical demography. We uncovered four evolutionarily distinct and geographically restricted lineages of green anoles using phylogenetics, Bayesian clustering, and genetic distance methods. Molecular dating indicates that these lineages last shared a common ancestor ∼2 million years ago. Summary statistics and analysis of the frequency distributions of DNA polymorphisms strongly suggest range-wide expansions in population size. Using Bayesian Skyline Plots, we inferred the timing of population size expansions, which differ across lineages, and found evidence for a relatively recent and rapid westward expansion of green anoles across the Gulf Coastal Plain during the mid-Pleistocene. One surprising result is that the distribution of genetic diversity is not consistent with a latitudinal shift caused by climatic oscillations as is observed for many co-distributed taxa. This suggests that the most recent Pleistocene glacial cycles had a limited impact on the geographic distribution of the green anole at the northern limits of its range

    Sub-lethal effects of waterborne exposure to copper nanoparticles compared to copper sulphate on the shore crab ( Carcinus maenas )

    Get PDF
    publisher: Elsevier articletitle: Sub-lethal effects of waterborne exposure to copper nanoparticles compared to copper sulphate on the shore crab (Carcinus maenas) journaltitle: Aquatic Toxicology articlelink: http://dx.doi.org/10.1016/j.aquatox.2017.08.006 content_type: article copyright: © 2017 Elsevier B.V. All rights reserved

    Interspecific Variation in Temperature Effects on Embryonic Metabolism and Development in Turtles

    No full text
    We measured temperature-induced differences in metabolic rates and growth by embryos of three turtle species, Macrochelys temminckii, Trachemys scripta, and Apalone spinifera, at different, constant, temperatures. Oxygen consumption rate (VO2) was measured during development and used to characterize changes in metabolism and calculate total O2 consumption. Results from eggs incubated at different temperatures were used to calculate Q10s at different stages of development and to look for evidence of metabolic compensation. Total O2 consumption over the course of incubation was lowest at high incubation temperatures, and late-term metabolic rate Q10s were \u3c2 in all three species. Both results were consistent with positive metabolic compensation. However, incubation temperature effects on egg mass-corrected hatchling size varied among species. Apalone spinifera hatchling mass was unaffected by temperature, whereas T. scripta mass was greatest at high temperatures and M. temminckii mass was lowest at high temperatures. Hatchling mass : length relationships tended to correlate negatively with temperature in all three species. Although we cannot reject positive metabolic compensation as a contributor to the observed VO2 patterns, there is precedence for drawing the more parsimonious conclusion that differences in yolk-free size alone produced the observed incubation temperature differences without energetic canalization by temperature acclimation during incubation
    • …
    corecore