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observed for all studied Au NP, with CIT stabilized Au NP showing similar rates
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on uptake and depuration kinetics is essential to consider in long term studies of ENP
where food addition is necessary. This study demonstrates the feasibility of a short-
term test design to assess the uptake and depuration of ENP in D. magna. The
findings underlines that the assumptions behind the traditional way of quantifying
bioconcentration are not fulfilled when ENPs are studied.
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Abstract (281 words) 14 

This study presents a series of short-term studies (total duration 48h) of uptake and depuration of engineered 15 

nanoparticles (ENP) in neonate Daphnia magna. Gold nanoparticles (Au NP) were used to study the 16 

influence of size, stabilizing agent and feeding on uptake and depuration kinetics and animal body burdens. 17 

10 and 30 nm Au NP with different stabilizing agents (citrate (CIT) and mercaptoundecanoic acid (MUDA)) 18 

were tested in concentrations around 0.5 mg Au/L. Fast initial uptake was observed for all studied Au NP, 19 

with CIT stabilized Au NP showing similar rates independent of size and MUDA showing increased uptake 20 

for the smaller Au NP (MUDA 10 nm > CIT 10 nm, 30 nm > MUDA 30 nm). However, upon transfer to 21 

clean media no clear trend on depuration rates was found in terms of stabilizing agent or size. Independent of 22 

stabilizing agent, 10 nm Au NP resulted in higher residual whole-animal body burdens after 24h depuration 23 

than 30 nm Au NP with residual body burdens about one order of magnitude higher of animals exposed to 10 24 

nm Au NP. The presence of food (P. subcapitata) did not significantly affect the body burden after 24h of 25 

exposure, but depuration was increased. While food addition is not necessary to ensure D. magna survival in 26 
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Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

mailto:lams@env.dtu.dk
http://www.editorialmanager.com/ectx/viewRCResults.aspx?pdf=1&docID=3853&rev=2&fileID=57585&msid={52D596F1-EA25-4B0A-BF51-AD94BFA65AD3}


2 

 

the presented short-term test design, the influence of food on uptake and depuration kinetics is essential to 27 

consider in long term studies of ENP where food addition is necessary. This study demonstrates the 28 

feasibility of a short-term test design to assess the uptake and depuration of ENP in D. magna. The findings 29 

underlines that the assumptions behind the traditional way of quantifying bioconcentration are not fulfilled 30 

when ENPs are studied. 31 

 32 

Keywords: Kinetics; Feeding; Size; Test design; Au 33 

 34 

Introduction 35 

An extensive literature review of all papers on environmental effects of engineered nanomaterials 36 

and nanoparticles (ENM and ENP, respectively) published before 2009 were published in 2010 37 

concluding that, “only a few studies have dealt with bioaccumulation of metal nanoparticles” (Stone 38 

et al., 2010). The main focus in the scientific literature dealing with environmental effects of ENM 39 

has been on toxicity aspects and to a much lesser extends on uptake and depuration of ENM. Since 40 

2009 the literature on uptake and depuration of ENM has been expanding (>50 studies on terrestrial 41 

and aquatic species are available at present) but comparisons and generalizations are difficult due to 42 

the large variety of ENM tested, lack of standardized test procedures and differences between test 43 

organisms. A review on test methods and test organisms by Handy et al. (2012a) underlined the 44 

need for modification of ecotoxicity and environmental fate test methods to ENM in terms of e.g. 45 

test species, test media and concentrations monitoring during test. Especially, for chronic studies 46 

which can last for weeks (e.g. 21 days using the OECD 211 Reproduction test with D. magna 47 

(OECD 2008)) the afore mentioned parameters becomes critical as the tests often become more 48 

complex and include even more complicating factors such a semi-static exposure conditions and 49 

feeding of the animals.  50 

 51 
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As outlined by Handy et al. (2012a) the choice of organism is of crucial importance, and with 52 

respect to uptake of ENM D. magna is considered to be a relevant test organism due to feeding 53 

traits, general behavioural habits and placement in the food chain (Baun et al. 2008). D. magna 54 

filters water to catch particles (mainly algae) in the size range 0.4–40 μm (Gophen & Geller, 1984; 55 

Geller & Müller, 1981). Different agglomeration patterns of Au NP are observed for different 56 

stabilizing agents thus actively affecting the size of ENM in water (Liu et al., 2011).  Due to 57 

agglomeration of ENM in freshwater it is therefore likely that ENM agglomerates will be ingested. 58 

This has been demonstrated in a number of studies with Daphnia spp. and different types of ENM 59 

or agglomerates e.g. Lovern et al. (2008), Baun et al. (2008a, b), , Petersen et al. (2009), Zhu et al. 60 

(2010), Croteau et al. (2011), Hartmann et al. (2012) and Hu et al. (2012). As a part of the digestion 61 

process Daphnia spp. are known to take in water (Gills et al., 2005) thus small particles can directly 62 

be taken up from the water column (Rosenkrantz et al., 2009). Also attachment to algae is a possible 63 

route of uptake for ENM and ENP agglomerates. Uptake across the gut section generally requires 64 

transport across a biological membrane. This transport is largely controlled by passive diffusion, 65 

active uptake, transport through ion channel or carrier mediated transport (Sijm et al., 2007). 66 

However, for ENP different types of cytosis could be the mechanism of uptake. For metal-based 67 

ENP susceptible to release metal ions a combination of well-understood mechanisms could be used 68 

to describe the uptake both through phagocytosis and ion theory. Silver NP studied by Zhao & 69 

Wang (2010) showed uptake rates being biphasic with difference for high and low concentration. 70 

Higher uptake rates at higher concentrations were assumed to be due to particle ingestion. However, 71 

uptake at lower concentrations could be well described by first-order uptake kinetics (Zhao & 72 

Wang, 2010). Histological studies by e.g. Lovern et al. 2008 showed Au NP in the gut section. 73 

Similarly, Au NP were found solely in the gut section of the filter-feeding bivalve (Corbicula 74 

fluminea) after exposure to CIT coated Au NP (Hull et al., 2011). For the lugworm (Arenicola 75 
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marina) exposed to TiO2 NP with agglomeration size of > 200 nm, no uptake past the gut lumen 76 

was observed (Galloway et al. 2010). Conversely, nano-sized polystyrene beads (20 nm) were 77 

found in the oil droplets of D. magna (Rosenkranz et al. 2009). Other studies have also found 78 

different uptake behaviour due to size and shape as shown for different shaped nanocrystals of 79 

Cu2O NP in D. magna (Fan et al. 2011), for different sized CuO in deposit-feeding snails 80 

(Potamopyrgus antipodarum) (Pang et al. 2012), and Au NP of different sizes in tellinid clams 81 

(Scrobicularia plana) (Pan et al. 2012).  82 

 83 

From the above studies the size, shape and stabilizing agents or coatings have been identified as 84 

factors that may affect the potential uptake and depuration of ENP. Therefore, this study aims to 85 

investigate the particle specific uptake of engineering nanoparticles as a function of particle size and 86 

stabilizing agent and evaluate the proposed test design in terms of test duration and mass balances 87 

of the added ENP in the test setup. Furthermore, it was studied if feeding has an influence on the 88 

uptake and depuration behaviour of Au NP. Throughout this study the term uptake is used to 89 

describe particles entering the test organism and does not necessarily imply that translocation or 90 

membrane passage occurred. The study carried out using the invertebrate D. magna as model 91 

organism and Au NP with two stabilizing agents and two sizes. Gold was chosen as a study particle 92 

for a number of reasons: I) Au NP exhibit a low toxicity thus minimizing toxicity effects interfering 93 

with uptake and depuration kinetics, II) Even at the nano-scale gold is a rather inert material and in 94 

water minimal dissolution will occur, III) Through a well-controlled synthesis, Au NP with 95 

different sizes and functionalizations can be produced, IV) There is a low background concentration 96 

of gold in the aquatic environment and V) Low detection limit both chemically and by 97 

Transmission Electron Microscopy (TEM) (Alkilany and Murphy, 2010; Mermet, 2005). 98 
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Furthermore, Au NP is on the OECDs “List of Representative Manufactured Nanomaterials”, which 99 

is a list of thirteen NM that is about to enter, or already have entered into commerce (OECD, 2010). 100 

 101 

Materials and Methods 102 

Test organism 103 

The D. magna culture originates from Birkedammen, Denmark in 1978 and has since then continuously been 104 

cultured at the Department of Environmental Engineering, Technical University of Denmark. For culturing, 105 

12 adult animals were kept in a 1 L glass beaker filled with 800 mL Elendt M7 medium (OECD 2004). The 106 

culture medium was renewed twice a week, and the animals were fed with green algae (P. subcapitata) three 107 

times a day for 15 minutes via pump. The culture was maintained in a temperature-controlled room at 20 108 

±1°C with a 16:8 hour light-dark cycle.  109 

 110 

Chemicals  111 

Four different Au NP suspensions were obtained from the University of Alberta, Canada. Nanoparticles with 112 

a particle size of 10 and 30 nm were stabilized with CIT or MUDA, respectively. CIT stabilized Au NP were 113 

prepared in aqueous media by heating a solution of HAuCl4-2H2O (0.25 mM, 3.75 mM tribasic salt, 1 L) to 114 

90°C. The solution was heated for 1 hour over which time its colour gradually changed to grey and finally 115 

purple/red. The CIT Au NP solutions were subsequently purified by dialysis. Dialysis was done on 1000 ml 116 

of stock solution which was divided into two 500 ml fractions and placed in Lot Number 3244650 dialysis 117 

tubing (approximate molecular weight cut off = 8,000 Daltons). The filled tubes were submerged in distilled 118 

water for 4 days and the bath water was changed at 12 hour intervals. MUDA stabilized Au NP were 119 

prepared by addition of 500 ml fraction of 30 nm CIT capped Au NP stock solution directly to an ethanol 120 

solution of 11-MUDA (0.12 g, 3 ml). The mixture was stirred in subdued light for one week. The resulting 121 

solution was then purified by dialysis using the procedure outlined above. 122 

Aqua regia (nitrohydrochloric acid) was prepared by mixing analytical grade HNO3 and HCl (Sigma-Aldrich) 123 

at a ratio of 1:3 (v/v). 124 
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Preparation of Au NP test solution 125 

The test dilutions for the toxicity, uptake and depuration studies were prepared immediately prior to use by 126 

adding the required amount of stock solution to a volumetric flask containing Elendt M7 medium (OECD 127 

2004). The flask was hereafter filled up to the mark with Elendt M7 medium. No stirring or ultra-sonication 128 

was applied.  129 

 130 

Characterization with Transmission Electron Microscopy and Dynamic Light Scattering 131 

Stock solutions were characterized in MilliQ water by placing a drop on copper grids (Cu, 3 mm, 250 mesh 132 

square, SPI-grids) and letting it dry for 1 hour before analysing it with TEM (Valeta CM 100 Phillips, 133 

operating voltage 100 kV). FT-IR spectroscopy was performed on powder samples using a Nicolet Magna 134 

750 IR spectrophotometer.  X-ray photoelectron spectroscopy (XPS) was acquired in energy spectrum mode 135 

at 210W, using a Kratos Axis Ultra X-ray photoelectron spectrometer.  Samples were prepared as films drop-136 

cast from solution onto a copper foil substrate. 137 

Size of Au NP in Elendt M7 was determined by Dynamic Light Scattering using a Zetasizer Nano-ZS at 138 

20 °C. A backscattering angle of 173° was used to determine the observed light. Each agglomeration 139 

experiment was run with three replicates using 30 measurement runs of 1 mL sample solution in 1 x 1 cm 140 

plastic cuvettes. Stokes-Einstein equation was used to calculate the hydrodynamic diameter of the Au NP 141 

using the cumulant method for fitting the autocorrelation function (Kretzschmar et al., 1998). 142 

 143 

Acute toxicity test 144 

A series of acute toxicity studies were carried out to determine appropriate concentrations to be used in 145 

uptake and depuration studies. All acute toxicity tests were carried out following the OECD 202 guideline 146 

for acute immobilization tests with Daphnia sp. (OECD 2004). D. magna neonates (<24h old) were used for 147 

testing. The tested concentrations range from 0.1 mg/L to 10 mg/L and the number of immobile animals was 148 

counted after 24 hours and 48 hours. Toxicity of the reference compound (potassium dichromate), pH-values, 149 

and oxygen concentrations were within the validity criteria specified by the guideline (OECD 2004) 150 

(Supplementary Information Table S1). 151 
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 152 

Uptake and depuration experiments 153 

Uptake and depuration experiments, including a 24 h uptake period followed by a 24 h depuration period 154 

were carried out in suspensions of 0.5 mg Au/L with the differently sized and capped Au NP (10 nm and 30 155 

nm with both CIT and MUDA as stabilizing agent). 5-10 D. magna neonates were placed into a 100 mL 156 

glass beaker containing 25 mL of Au NP suspension. Furthermore, three control beakers without addition of 157 

Au NP were included. Beakers were incubated at 20°C in the dark and mortality was noted for each beaker at 158 

the end of the test. D. magna were sampled after 1, 2, 4, 6 and 24 hours by sacrificing the mobile animals of 159 

three beakers at each sampling time. Immobile D. magna was not used for the chemical analysis. 160 

Immediately after sampling the animals were rinsed in a 10% diluted aqua regia for approximately 30 161 

seconds after which they were stored in 20 mL glass vessels for chemical analysis. At the end of the 24 hours 162 

the exposure period all mobile animals in the remaining beakers were transferred to fresh Elendt M7 medium 163 

for the depuration study. Here the animals from three beakers were sampled at 1, 2, 4, 6, and 24 hours after 164 

transfer to clean media. All sampled D. magna were stored in the dark at room temperature up to the 165 

chemical analysis. In addition to the above described tests, animals from three beakers were sacrificed daily 166 

(at 48 and 72h) in a preliminary prolonged study of depuration. To estimate the weight of D. magna a 167 

parallel test setup scaled to approximately 100 D. magna neonates were carried out using same test 168 

conditions as described above. At the end of the test period (24h) the D. magna were transferred to an oven 169 

dried G55 filter and dried in oven at 105°C for 24 hours before weighing. 170 

 171 

The influence of feeding during uptake and depuration of Au NP 172 

For the studies of the influence of feeding on uptake and depuration in D. magna, ten neonates were placed 173 

in 100 mL beakers containing 25 mL Elendt M7 medium with a concentration of 0.4 mg Au/L (10 nm CIT 174 

Au NP). An additional three controls containing clean Elendt M7 medium were prepared for sampling at the 175 

end of the tests (48 hours). Test beakers were incubated in the dark at 20±1 °C for the duration of the test and 176 

three beakers were sampled per time i.e. 30 animals. Sampling for ENP uptake was done at 1, 2, 4, 8 and 24 177 

hours. At end of the uptake period all D. magna in the remaining beakers were transferred to beakers with 25 178 
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mL clean Elendt M7 media after a quick rinsing step (also in Elendt M7 media) to remove Au NP from 179 

exoskeleton. Sampling in triplicates for depuration was done at 25, 26, 28, 32, and 48 hours after test start. 180 

For sampling, D. magna were transferred from the test beaker to a nylon filter with a plastic pipette and 181 

rinsed in a 10 % dilution of aqua regia for 30 seconds prior to storage in 20 mL glass vials. The feeding 182 

experiments were carried out for four different scenarios: with or without food for the uptake and depuration. 183 

Food (P. subcapitata, 0.2 mg C/animal/day, corresponding to 2∙10
7
 cells/ml measured with Z2 Coulter 184 

Counter, Beckman Coulter™) was administered either at the beginning of the exposure period and/or at the 185 

beginning of the depuration period. This experiment without feeding is considered the base line study to 186 

which identical studies with addition of food during uptake and/or depuration is compared. To estimate the 187 

weight of D. magna a parallel test setup (with and without food) scaled to approximately 100 D. magna 188 

neonates were carried out using same test conditions as described above. At the end of the test period (24h) 189 

the D. magna were transferred to an oven dried G55 filter and dried in oven at 105°C for 24 hours before 190 

weighing. 191 

 192 

Mass balance of Au after exposure 193 

Mass balances were determined for the test system using 30 nm CIT Au NP and 30 nm Au NP from National 194 

Institute of Standards and Technology (NIST). The latter were used as a reference material for recovery in 195 

the test system as well as for acid digestions and analytical determination of gold. In the mass balance 196 

experiments five neonates (<24 h) were put into 100 mL glass beakers filled with 25 mL of 0.5 mg/L Au NP 197 

suspension in Erlendt M7 medium. After 24 hours exposure period, animals were removed with a fine nylon 198 

mesh. Subsequently, all animals from one beaker were put simultaneously into 20 mL of diluted aqua regia 199 

(ratio 1:10) for approximately 30 seconds. Hereafter, they were again transferred with a plastic pipette onto 200 

nylon net. The net was dried from the bottom with a paper towel to remove excess liquid and the animals 201 

were transferred with the help of a metal tip into a glass vial. The glass vial was weighted before adding 2 202 

mL of aqua regia. All vials were stored in the dark at room temperature for at least 24 hrs, before they were 203 

weighted again. Prior to chemical analysis 8 mL of distilled water were added. To test for Au adsorbed to the 204 

glassware, beakers used for the experiments were rinsed twice with 1 mL of aqua regia and hereafter two 205 
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times with 4 mL of distilled water. The 10 mL were transferred quantitatively to a 20 mL glass vial and 206 

stored in the dark at room temperature until chemical analysis. To test for Au in the solution 5 ml of the test 207 

dilutions was taken to determine the initial concentration. 2 mL of aqua regia was added at least 12 hours, 208 

prior to the chemical analysis. 209 

   210 

The influence of sorption during uptake of Au NP 211 

An experiment were conducted with animals incapable of actively consuming particles in order to determine 212 

the role of sorption to the animals in the interpretation of body burdens found in uptake and depuration 213 

studies. For this the uptake and depuration test setup (see section Uptake and depuration experiments) was 214 

used with D. magna that were put to death in a 16.9% ethanol solution in Erlendt M7 medium immediately 215 

before the beginning of the tests. Life signs were checked visually in a microscope to ensure that no 216 

movement was present. Immediately hereafter the D. magna were rinsed in a clean Elendt M7 medium and 217 

transferred to the test beakers, where they fell to the bottom of the solution.  218 

 219 

Chemical analysis 220 

Prior to chemical analysis all samples were digested in aqua regia at room temperature for at least 24 hours 221 

in the dark. During the digestion procedure no heat or other additional treatment was applied. Before the 222 

chemical analysis distilled water was added and the samples were decanted into disposable plastic vials. 223 

Chemical analysis was carried out with ICP-OES (Varian Vista-MPX CCD simultaneous ICP-OES) using 224 

the following settings: max standard error ± 15%, scanning with internal standard Y-377.433. Gold standards 225 

used: Au-208.207, Au-211.068, Au-242.794, Au-267.594.  226 

 227 

Data treatment 228 

For the analysis of acute toxicity data the program ToxCalc
TM

 v5.0 was used. The method used in this study 229 

was the point estimate method which is linear regression by maximum likelihood estimation where the probit 230 

model is used (Tidepool Scientific). For the quantification of data from the uptake and depuration studies, 231 
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rates for the initial uptake (k1,initial) and depuration (k2,initial) were modelled using first-order rate model given 232 

in Eq. 1 using non-linear curve fitting (GraphPad Prism v5.0).  233 

   
    

  
(       )    (1) 234 

Where Ct is the concentration in the organism at time t, Cw is the water phase concentration, ku is the uptake 235 

rate and ke is the elimination rate. To accommodate for changing water concentration the initial water phase 236 

concentration was used to estimate a low uptake rate (Start) and the final water phase concentration was used 237 

to estimate a high uptake rate (Final). 238 

All experiments were carried out in triplicates and for each data set the mean and standard deviation (SD) 239 

was calculated. Mean values were recorded as mean ± 1 SD throughout this paper. For comparisons of two 240 

groups the Kruskal-Wallis test and Dunn’s multiple comparison test was used and data was considered 241 

statistically significant different at p-value <0.05 (GraphPad Prism v5.0). 242 

 243 

Results   244 

Characterization and stability of Au NP 245 

From the TEM pictures of Au NP dispersed in  MilliQ water it is seen that the particles’ shapes and sizes 246 

corresponds to the suppliers information and was generally found to be homogenous throughout the samples 247 

(Figure 1). IR spectra and XPS after ligand exchange in aqueous solution showed no peaks of non reacted Au 248 

ions (Supplementary Information Figure S1). Initial measurements (0 h) using DLS to determine the size 249 

distribution in Elendt M7 media showed bimodal volume distributions for the MUDA 10 nm Au NP with 250 

two distinct peaks with 71% in the range of 20±5 nm and a 2
nd

 peak of 28% in the range of 142±53 nm. 251 

MUDA 30 Au NP showed a similar trend in volume distribution with 82% in the range of 109±42 nm and 252 

18 % in the range 23±5 nm. CIT 10 nm Au NP showed 91% in the range of 14±4 nm and 9% in the range of 253 

112±47 nm. CIT 30 nm Au NP showed an increase in size to 225±61 nm. After 24 hours all Au NP except 254 

CIT 10 nm was found in the 1
st
 peak (Table 1). Agglomeration to larger sizes was observed for all tested Au 255 

NP after 24 hours. The zeta-potential of the Au NP after 24 hours in Elendt M7 medium was found to be 256 

13±6 mV, 14±6 mV, 16±6 mV and 16±5 mV for MUDA 10 nm, CIT 10 nm, CIT 30 nm and MUDA 30 nm 257 
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respectively. All Au NP particles were found to have an incipient stability (±10 to ±30 mV) in Elendt M7 258 

media within the time frame used for uptake tests (24 h).   259 

 260 

Mass balance of Au in the test system 261 

No sorption of Au NP to the exterior surfaces of D. magna was observed in the study with dead animals as 262 

all analysed samples had a gold content below the detection limit of the ICP-OES (1.34±0.06 g/L). From a 263 

series of preliminary studies it was found that rinsing exposed animals with diluted aqua regia upon transfer 264 

to depuration beakers was superior to distilled water in terms of recovery (data not shown). The results from 265 

the mass balance tests showed a recovery of 104±6.5% (n=3) after the 24 hours incubation period compared 266 

to the measured initial amount of gold added to the test system. The amount of gold recovered was divided 267 

between the following four fractions: 0.30±0.24% in the aqua regia used for rinsing the exterior of the 268 

animals, 38±2.4% in the acid digested animals, 32±2.9% adsorbed to the glass of the test vessel and 30±4.7% 269 

in the water phase. 270 

 271 

Acute toxicity testing of Au NP 272 

The results from the acute toxicity tests are shown in Table 2. It is seen that MUDA Au NP was generally 273 

more toxic than the CIT Au NP. From the values presented in Table 2 sub-lethal exposure concentration of 274 

0.5 mg Au/L was used based on the acute toxicity of the MUDA Au NP as they showed the highest toxicity 275 

of the tested Au NP (Table 2).  276 

 277 

Uptake and depuration of Au NP in D. magna 278 

The uptake of Au NP in D. magna was assessed by exposing neonates to Au NP for 24h. For all 279 

concentrations and figures reported the respective background concentration in non-exposed control animals 280 

was subtracted (0.1±0.03 ng Au/µg dw organism, n=9). This value was determined as the detection limit 281 

using the procedure described in the section “Chemical analysis”. Preliminary tests with an uptake period 282 

longer than 24 hours (48 hours and 72 hours) showed that the body burden in D. magna, independent of 283 
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stabilizing agent or size of Au NP, was not statistically significant different from that of animals exposed for 284 

24 hours (p<0.05) (Supplementary Information Figure S2) thus only data for 24 hours was shown here. 285 

Similarly, it was found that the aqueous concentration did not show statistically significant changes after 24 286 

hours of exposure (Supplementary Information Figure S3). Results of tests with 10 nm MUDA Au NP 287 

showed a rapid increase in animal body burden during the first 8 hours of the test reaching 27.8±3.6 ng 288 

Au/µg dw organism (Figure 2). After 8 hours the uptake stabilized reaching a body burden of 30.1±7.2 ng 289 

Au/animal after 24 hours. After 24 hours of exposure the animals transferred to clean Elendt M7 media 290 

showed a decrease in body burden to 24±0.9 ng Au/animal within the first hour of depuration (Figure 2). 291 

From 8 to 24 hours of depuration the body burden decreased further to 16.1±10.3 ng Au/animal. Table 3 292 

summarizes the modelled uptake and depuration rates as well as the residual animal body burden after 24 293 

hours of depuration. It should be noted that after 24 hours of depuration a residual amount of 16.1±10.3 ng 294 

Au/µg dw organism of approximately two orders of magnitude higher than the measured background was 295 

still present in the animals (Figure 2). 296 

 297 

The test performed with 30 nm MUDA Au NP showed a linear trend of uptake throughout the first 24 hours 298 

of testing reaching a body burden of 1.83±1.1 ng Au/µg dw organism (Figure 2). In the depuration phase a 299 

general trend of decreasing body burden towards 8 hours and flattening towards 28 hours was observed 300 

(Figure 2). However, none of the repliactes measured were found to be statistically different form each other 301 

(p<0.05) The residual body burden at the end of the depuration study (Table 3) was approximately one order 302 

of magnitude higher than the background concentration in non-exposed animals. 303 

 304 

Tests with 10 nm CIT Au NP showed an increase in animal body burden up until 24 hours of uptake 305 

reaching 17.8±1.7 ng Au/µg dw organism (Figure 2). After transfer to clean medium, a statistically 306 

significant decrease in animal body burdens were observed from 0 to 1 hours reaching 10.8±0.9 ng Au/µg 307 

dw organism. The residual animal body burden reached after 21 hours of depuration was 11.2±3.2 ng Au/µg 308 

dw organism which is approximately two orders of magnitude higher than the background concentration of 309 

Au in control animals.  310 
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 311 

Results from uptake and depurations studies for 30 nm CIT Au NP are shown in Figure 2 and Table 3. The 312 

data sets from 0.5 to 2 hours uptake showed no statistical difference compared to the control but was above 313 

the quantification limit of the ICP-OES (0.7 µg Au/L). The data set for 4 hours uptake was found to be 314 

statistically different from the control with a body burden of 3.3±0.7 ng Au/µg dw organism. After 24 hours 315 

the body burden had increased to 8.0±4.3 ng Au/µg dw organism. As shown in Figure 2 the animal body 316 

burden decreased to 7.2±0.4 ng Au/µg dw organism within the first hour of the depuration period. From 2 to 317 

4 hours a decrease to 3.9±1.7 ng Au/µg dw organism was observed. From 4 to 24 hours a trend of decreasing 318 

body burden was observed. The residual body burden reached after 24 hours of depuration was 1.7±1.0 ng 319 

Au/µg dw organism (Table 3) which is, approximately one order of magnitude higher than the measured 320 

background concentration in non-exposed control animals. 321 

 322 

Influence of feeding on uptake and depuration of Au NP in D. magna 323 

The results of experiments carried out to study the influence of feeding during the uptake and depuration of 324 

10 nm CIT Au NP (0.4 mg Au/L) are shown in Figure 3.  For all feeding studies steady body burdens were 325 

assumed to be reached after 24 hours in accordance with results shown in Figure 2, Figure 3 and preliminary 326 

test results (Supplementary Information Figure S3). Without addition of food in both the uptake and 327 

depuration phases, a fast uptake was observed during the first 4 hours (Figure 3). After 24 hours of exposure 328 

the body burden was 51.3±4.3 ng Au/µg dw organism. After transfer to clean medium a rapid depuration was 329 

observed during the first hours (Figure 3) and levelling off after 8 hours. A residual body burden (0.9±0.3 ng 330 

Au/animal) of approximately one order of magnitude higher than that of the background concentration of 331 

non-exposed control animals was observed after 24 hours of depuration.  332 

 333 

Tests carried out with no feeding during the uptake phase and feeding during the depuration phase is shown 334 

in Figure 3. An increase in body burden was observed during the first 8 hours of the uptake phase and 335 

levelled off towards 24 hours. The body burden reached after 24 hours of uptake was 28.7±4.0 ng Au/µg dw 336 

organism. In the depuration phase a rapid decrease in body burden was observed within the first hour after 337 
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the transfer of animals to clean medium. The data obtained at 2 to 24 hours of depuration showed no 338 

statistical difference in the animals’ content of gold compared to that found after 1 hour. The residual body 339 

burden after 24 hours (0.8±0.06 ng Au/µg dw organism) was approximately one order of magnitude higher 340 

than that of the measured background concentration. 341 

 342 

For the test with feeding during uptake phase and no feeding during depuration the results are shown in 343 

Figure 3. As it was the case for the experiment without feeding during uptake and feeding during depuration, 344 

a rapid increase was observed through the first 4 hours. The body burden reached after 24 hours of uptake 345 

was 11.0±15.9 ng Au/µg dw organism. A rapid decrease in animals’ body burdens was observed within the 346 

first 2 hours after the transfer to clean medium. A residual body burden (0.46±0.14 ng Au/µg dw organism) 347 

approximately 1 order of magnitude higher than the background concentration was observed after 24 hours 348 

of depuration. 349 

 350 

Test results for uptake with feeding during both uptake phase and depuration phase is shown in Figure 3. 351 

Even though a rapid increase in body burden was observed during the first 4 hours is should be observed that 352 

the levels are about a factor of 10 lower than levels observed without feeding (Figure 3) resulting in a body 353 

burden of 1.4±0.2 ng Au/µg dw organism after 24 h. When transferred to clean media the content of gold in 354 

the animals was under the detection limit of the ICP-OES already after 1 hour. 355 

 356 

Discussion 357 

It is generally assumed that the size exclusion for particle intake by filtration in D. magna is in the range 0.6-358 

40 µm. In a study by Lee and Ranville (2012) the size of Au NP used were found to increase from the 359 

nominal 20 nm to >1.5 µm after 24 hours in hard water, i.e. to sizes where the Au NP might actively be taken 360 

up during filtration. Our study confirms that this is the case also for particle sizes below 600 nm as evidenced 361 

from the sizes reported in Table 1 and the experiments carried out with dead animals. In the experiments 362 

carried out with dead animals no significant uptake was seen supporting the fact that active uptake is the key 363 

mechanism for Au NP uptake in D. magna. The mass balance of our test system revealed that a substantial 364 
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amount (38±2.4% of the mass) of the Au NP added was recovered in D. magna after 24 hours of exposure. 365 

Correspondingly, in the 48 h exposure study of D. magna to Au NP, Lee and Ranville (2012) also found a 366 

very high (91.2 ± 8.7%) depletion of Au from an aqueous suspension. 367 

From this it is evident that considerable amounts of added Au NP, dependent on size and agglomeration 368 

pattern, is taken up and removed from the water column by D. magna.  369 

 370 

While the loss of compound due to sorption may not be different from what would be encountered for 371 

“conventional” chemicals with low water solubility, the active uptake of particles as well as the possible 372 

agglomeration and sedimentation (Unrine et al (2012); Liu et al. (2012); Tejamaya et al. (2012)) highlights 373 

that the depletion of nanoparticles from the water column should be accounted for when data from this type 374 

of test setup are evaluated. From Figure 2 a general increase in body burdens with time is observed until 375 

steady levels are reached for all Au NP tested. Since the concentration in the beaker is not constant thus 376 

assumptions for estimating bioconcentration factors will be invalid even though a plateau is reached. With 377 

lower tested concentrations depletion of ENP from the water column could be an issue especially when 378 

testing with organisms known to filter large amount of water e.g. mussels or cladocerans. If stripping of ENP 379 

from the water column would occur, the idea of diffusion driven transport and chemical equilibrium between 380 

the organism and the surroundings would be invalid since the concentration in the media is altered due to 381 

active removal of particles into the test organism as indicated from the above studies on mass balance. 382 

 383 

A slow depuration of 10 and 30 nm MUDA stabilized Au NP was observed during the first 6 hours after 384 

transfer to clean media (Figure 2). Conversely, 10 and 30 nm CIT stabilized Au NP shows a rapid depuration 385 

during the first hours after transfer to clean media (Figure 2). In the literature values varying from 2 to 55 386 

min was found for the gut retention time in Daphnia spp. (Bond, 1973; Bourne, 1959; Rigler, 1961; 387 

Schindler, 1968; McMahon, 1970, Gliwicz, 1986; Cauchie et al., 2000). Consequently, the depuration of Au 388 

NP observed could be a matter of purging of the gut. However, as observed from Figure 2 there is a 389 

substantial residual body burden remaining in the gut of D. magna even after the 24 hours of depuration, 390 

especially for the 10 nm Au NP (Table 3). Gophen and Gold (1981) suggested that Daphnia spp. could 391 
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preserve food in the gut section during starvation. The animals used in our study were not fed during the 48 392 

hours of testing and therefore it is likely that the test organism would retain some of their gut content. Figure 393 

2 (squares) shows that ingested Au NP are depurated, possibly through fecal pellets to the test media. 394 

However, when no food is present the Au NP may not be bound in fecal pellets and may re-enter the water 395 

column and be available for uptake. The behavioural traits of D. magna to scavenge button sediments (the 396 

button of the glassware in this type of test setup) searching for food sources, may imply that excreted Au NP 397 

may still available for uptake. In our test setup the role of fecal pellets in Au NP uptake could not be 398 

evaluated, but since other studies have found significant amounts of ENP in feces of test organisms e.g. in 399 

mussels by Montes et al. (2012), the influence hereof on uptake of ENP should be studied further. 400 

 401 

A lower uptake of MUDA 30 nm Au NP in terms of mass was observed through the whole uptake period 402 

compared to the other Au NP (Figure 2). The differences in stabilizing agents and sizes may have resulted in 403 

different agglomeration behaviour in the media rendering differences in bioavailability of the tested Au NP.  404 

Liu et al. (2012) used Au NP of same type and same batch as those applied in the present study and found 405 

that a combination of stabilizing agent and particle size affected the agglomeration kinetics. Thus, the results 406 

for uptake and depuration in the present study were found to be in agreement with behaviour of Au NP 407 

described by Liu et al. (2012). 408 

  409 

The modelled uptake rates for CIT 10 nm and CIT 30 were within the same order of magnitude (Table 3). 410 

While the depuration rate for MUDA 10 nm and MUDA 30 Au NP showed a respectively faster and slower 411 

release of ingested particles compared to the CIT stabilized Au NP. These findings suggest that stabilizing 412 

agents and initial particle sizes is important for determining the uptake and depuration behavior (Table 3). 413 

Results from Liu et al. (2012) suggested that agglomeration behaviour of Au NP is more dependent on their 414 

coating and stabilizing agent compared to core composition and particle size. Similarly, it was shown in this 415 

study that differences in stabilizing agent altered the agglomeration pattern (Table 1) but also that changes 416 

occurred as a function of time. Handy et al. (2012a) emphasized the importance of maintaining control of the 417 

test setup in terms of e.g. test media and establishing concentrations during testing of ENP. The presented 418 
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test setup offers the advantage that it uses a relatively short incubation period (in total 48 hours). Hereby the 419 

possibilities for controlling and characterizing ENP exposure during incubation (for an extended discussion 420 

on test setup considerations using ENM see the review by Handy et al. (2012b)). However, it should be noted 421 

that complete depurations of Au NP from the animals were not obtained within the 24 h depuration period 422 

applied in the present study. Consequently, additional purging of the gut could be necessary to distinguish 423 

between Au NP situated in the gut and in other tissues (Gillis et al., 2005). Feeding often facilitates purging 424 

or clearing of the gut and the results shown in Figure 3 also demonstrate that the addition of food affects the 425 

outcome of the tests. Both with and without the addition of algae, a rapid uptake during the first two hours of 426 

the test was observed (Figure 3). However, the body burden after 24 hours differed depending on the 427 

presence or absence of food during uptake (Figure 3). The body burden after 24 hours reached 8.8±12.7 ng 428 

Au/animal when food was present compared to 26.1±2.2 ng Au/animal without food (Figure 3). It is possible 429 

that sorption of Au NP to algae followed by ingestion obscures the clear uptake patterns generally seen in the 430 

absence of food in the uptake period. The indication of lower body burdens due to addition of food could 431 

also be caused by increased purging, as discussed previously. 432 

  433 

Consequently, it is clear that the presence of food adds another level of complexity to the test setup and 434 

increase the difficulty to achieve controlled conditions. However, as presented in the above study the highest 435 

body burden were seen when no feeding was done, and thus a worst-case scenario may be achieved when 436 

addition or presence of food is avoided. As addition of food to a larger extend resemble the processes that 437 

will occur in the environment a test setup with feeding will create a better understanding for what would 438 

happen in the event of ENM being released. An important aspect is that the lack of food seems to 439 

overestimate the uptake of ENM. 440 

 441 

Conclusion 442 

This study showed the feasibility of a short-term study using the invertebrate D. magna for assessing the 443 

uptake and depuration of Au NP as models for non-reactive ENP. The findings underlines that the 444 

assumptions behind the traditional way of quantifying bioconcentration are not fulfilled when ENPs are 445 
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studied since steady state and equilibrium chemistry do not apply to colloidal suspensions undergoing 446 

dynamic changes during the incubation. Based on mass balance measurements during the 24 hour exposure 447 

period it was found that five neonate D. magna can take up more than one third of the added 0.5 mg Au/L in 448 

25 mL suspensions of 10 nm CIT stabilized Au NP. No sorption of Au NP to exterior surface of the test 449 

animals was found for the tested types of Au NP. A fast initial uptake in D. magna neonates was observed 450 

independent of size and stabilizing agent. However, the results indicate that stabilizing agent affected the 451 

depuration rate, though there was no trend in size. The residual concentration in animals after 24 hours of 452 

depuration seemed to be more related to particle size than particle stabilizing agent as the 10 nm Au NP were 453 

found in higher amounts than the 30 nm Au NP regardless of stabilizing agent. The residual body burdens of 454 

10 nm Au NP were about two orders of magnitude higher than that of the control and one order of magnitude 455 

higher than that of the 30 nm Au NP. While it was found that feeding did not significantly affect the uptake 456 

of 10 nm CIT Au NP, faster depuration was measured when animals were fed. This finding may have 457 

implications for long term studies of ENP in D. magna where feeding is necessary.  458 
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Figures and Table Legends 567 

Figure 1: TEM images and statistical size distribtution of Au NP in MilliQ water from top: CIT 10 nm Au 568 

NP (d = 7.5±3 nm), MUDA 10 nm Au NP (d = 8.0±3 nm), CIT 30 nm Au NP (d = 23.0±9 nm) and MUDA 569 

30 nm Au NP (d = 27.0±6 nm) (MUDA: mercaptoundecanoic acid, CIT: citrate). 570 

 571 

Figure 2: 24 hours of uptake (diamonds) and depuration (squares) in neonate D. magna during exposure to 572 

0.5 mg Au/L in the uptake phase. The different size and stabilizing agent of the nanoparticles is indicated by 573 

the matrix (MUDA: mercaptoundecanoic acid). Points denoted * are statistical significantly different from 574 

the control (p<0.05). 575 

   576 

Figure 3: 24 hours of uptake (diamonds) and depuration (squares) during exposure to 0.4 mg Au/L with and 577 

without food during uptake and depuration using 10 nm CIT Au NP for nanoparticle exposure in the uptake 578 

phase. For test with feeding during uptake and depuration all values in the depuration phase was below the 579 

detection limit. Points denoted * are statistical significantly different from the control (p<0.05). 580 

 581 

Table 1: Size peaks recorded (Percentage of particles in this range) and zeta-potential of Au NP in Elendt M7 582 

after 0 and 24 hours measured by Dynamic Light Scattering and transformation to volume-based distribution 583 

(mean ± standard deviation; n=3).  584 

 585 

Table 2: Results from 24-h D. magna acute toxicity test with Au NP with different stabilizing agents. Effect 586 

concentrations and corresponding 95% confidence intervals are all in mg/L.  587 

 588 

Table 3: Nominal size of particles and stabilizing agent along with modelled uptake and depuration rates, 589 

with corresponding R
2
 and the remaining residual body burden of Au at the end of a 24 hours depuration 590 

period in clean Elendt M7 media. The values in the parentheses denote the 95% confidence interval with 591 

upper and lower boundary.  592 

 593 
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 594 

Supplementary Figures and Table Legends 595 

 596 

Figure S1: IR spectra of CIT Au NP and MUDA Au NP (left) and XPS after ligand exchange in aqueous 597 

solution in MUDA Au NP (right). 598 

 599 

Figure S2: Aqueous phase concentration of 0.4 mg Au/L after 24h, 48h and 72h in the presence of D. magna. 600 

Concentrations were measured at time 0 and calculated as percentage of initial (time 0). 601 

 602 

Figure S3: Body burden of Au NP with different stabilizing agents in D. magna after exposure to 0.4 mg 603 

Au/L for 24h, 48h and 72h. 604 

 605 

Table S1: Conditions for reference test and EC50-value for 48 hours using potassium dichromate. 606 

 607 

Table S2: Nominal size of particles and stabilizing agent along with modelled uptake (Start) and uptake 608 

(Final) rates, with corresponding R
2
. The values in the parentheses denote the 95% confidence interval with 609 

upper and lower boundary.  610 
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Test compound Size Peak 1 

[nm] 

Size Peak 2 

[nm] 

Zeta-potential 

[mV] 

t = 0 t = 24h t = 0 t = 24h t = 0 t = 24h 

MUDA 10 nm Au NP 20±5 

(71%) 

229±60 

(100%) 

142±53 

(29%) 

N/A -14±7 -16±5 

MUDA 30 nm Au NP 109±42 

(82%) 

279±53 

(100%) 

23±5 

(18%) 

N/A -15±9 -13±6 

Citrate 10 nm Au NP 14±4 

(91%) 

188±48 

(60%) 

112±47 

(9%) 

20±4 

(40%) 

-14±8 -14±6 

Citrate 30 nm Au NP 225±61 

(100%) 

328±61 

(100%) 

N/A N/A -14±9 -16±6 

*mercaptoundecanoic acid. N/A: No applicable data. 

Table 1



Test compound EC10, 24h 

[mg Au/L] 

EC10, 48h 

[mg Au/L] 

MUDA* 10 nm Au NP 0.73 [0.07; 2.4] 0.14 [0.05; 0.25] 

MUDA* 30 nm Au NP 2.1  [0.49;5.6] 0.14 [0.0005;0.45] 

Citrate 30 nm Au NP >10 >10 

*mercaptoundecanoic acid 

Table 2



Nominal size 

[nm] 

Stabilizing 

agent 

Uptake rate
a
  

[L kg
-1

 dw h
-1

] 

Depuration rate 

[h
-1

] 

R
2
 Residual mass 

[ng Au/µg dw organism] 

10 MUDA* 4112-27720 0.26 (0.15; 0.37) 0.81 16.1±10.3 

30 MUDA* 35-306 0.03 (0; 0.11) 0.68 1.2±0.76 

10 Citrate 339-2911  0.02 (0; 0.09) 0.84 11.2±3.2 

30 Citrate 409-2275 0.10 (0; 0.25) 0.65 1.7±1.0 

a 
The range for the uptake rates were derived from Equation 1 with the initial water phase concentration (lowest value) and the final water phase 

concentration (highest value) as input parameters. This was done to accommodate for changes in water concentration during the course of the 

experiment. *mercaptoundecanoic acid 
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