281 research outputs found

    Heterogeneity in inoculum potential and effectiveness of arbuscular mycorrhizal fungi

    Get PDF
    Arbuscular mycorrhizae are symbiotic associations among glomalean fungi and plant roots that often lead to enhanced water and nutrient uptake and plant growth. We describe experiments to test whether inoculum potential of arbuscular mycorrhizal (AM) fungal communities varies spatially within a broadleaf temperate forest, and also whether there is variability in the effectiveness of AM fungal communities in enhancing seedling growth. Inoculum potential of arbuscular mycorrhizal fungi in a temperate broad-leaved forest did not vary significantly among sites. Inoculum potential, measured as the extent to which the roots of red maple seedlings that had been germinated on sterile sand and then transplanted into the forest, were colonized by AM fungi, was similar in floodplain and higher elevation sites. It was as similar under ectomycorrhizal oaks as it was under red maples and other AM tree species. It was also similar among sites with deciduous understory shrubs with arbuscular mycorrhizae (spicebush, Lindera benzoin) and those with evergreen vegetation with ericoid mycorrhizae (mountain laurel, Kalmia latifolia). Where spicebush was the dominant understory shrub, inoculum potential was greater under gaps in the canopy than within the understory. Survivorship of transplanted red maple seedlings varied significantly over sites but was not strongly correlated with measures of inoculum potential. In a greenhouse growth experiment, arbuscular mycorrhizal fungal communities obtained from tree roots from the forest had different effects on plant growth. Seedlings inoculated with roots of red maple had twice the leaf area after 10 wk of growth compared to the AM community obtained from roots of southern red oaks. Thus, although there appears to be little heterogeneity in inoculum potential in the forest, there are differences in the effectiveness of different inocula. These effects have the potential to affect tree species diversity in forests by modifying patterns of seedling recruitment

    CHARACTER RELEASE FOLLOWING EXTINCTION IN A CARIBBEAN REEF CORAL SPECIES COMPLEX

    Get PDF

    Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds

    Get PDF
    The sediments of coastal wetlands contain large stores of carbon which are vulnerable to oxidation once disturbed, resulting in high levels of CO2 emissions that may be avoided if coastal ecosystems are conserved or restored. We used a simple model to estimate CO2 emissions from mangrove forests, seagrass beds, and tidal marshes based on known decomposition rates for organic matter in these ecosystems under either oxic or anoxic conditions combined with assumptions of the proportion of sediment carbon being deposited in either oxic or anoxic environments following a disturbance of the habitat. Our model found that over 40 years after disturbance the cumulative CO2 emitted from tidal marshes, mangrove forests, and seagrass beds were ∼70–80% of the initial carbon stocks in the top meter of the sediment. Comparison of our estimates of CO2 emissions with empirical studies suggests that (1) assuming 50% of organic material moves to an oxic environment after disturbance gives rise to estimates that are similar to CO2 emissions reported for tidal marshes; (2) field measurements of CO2 emissions in disturbed mangrove forests were generally higher than our modeled emissions that assumed 50% of organic matter was deposited in oxic conditions, suggesting higher proportions of organic matter may be exposed to oxic conditions after disturbance in mangrove ecosystems; and (3) the generally low observed rates of CO2 emissions from disturbed seagrasses compared to our estimates, assuming removal of 50% of the organic matter to oxic environments, suggests that lower proportions may be exposed to oxic conditions in seagrass ecosystems. There are significant gaps in our knowledge of the fate of wetland sediment carbon in the marine environment after disturbance. Greater knowledge of the distribution, form, decomposition, and emission rates of wetland sediment carbon after disturbance would help to improve models

    Legal frameworks for unique ecosystems – how can the EPBC Act offsets policy address the impact of development on seagrass?

    Get PDF
    Environmental or biodiversity offset policies allow for impacts occurring at one site to be offset through activities at another site. The federal government has recently released a policy for offsetting the impacts of activities approved under the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act). The EPBC Act policy can be used to offset impacts on terrestrial and marine ecosystems, and one of the first applications of the policy has been to offset impacts on seagrass meadows at risk due to the Abbot Point coal terminal expansion. The significant ecological differences between terrestrial and marine ecosystems, such as seagrass meadows, require different management approaches to ensure that impacts are offset. This article analyses the EPBC Act policy to determine whether it adequately caters for offsetting impacts on marine ecosystems, with seagrass used as an example. It concludes with recommendations for policy change directed at ensuring that the unique characteristics of seagrass ecosystems are considered in offset policies

    Terrestrial–marine connectivity: patterns of terrestrial soil carbon deposition in coastal sediments determined by analysis of glomalin related soil protein

    Get PDF
    Glomalin, an arbuscular mycorrhizal protein component of soil, can be used as an indicator of terrigenous-derived carbon. We measured glomalin in sediments using the terrestrial end-member as a reference in four coastal settings: (1) intertidal seagrass meadows distributed over a rainfall gradient, (2) sediments inshore and offshore from the mouth of a river, (3) coastal coral reefs at various distances from the shore, and (4) intertidal wetlands with varying levels of groundwater influence. Across the rainfall gradient, glomalin in seagrass meadow sediments increased at sites with high mean annual rainfall during the wet season (r(2) = 0.27; F-1,F-29 = 5.75; p = 0.029). Glomalin decreased in inshore river sediments (terrestrial) to offshore (marine) sediments (r(2) = 0.81; F-1,F-17 = 71.7;

    Rolling covenants to protect coastal ecosystems in the face of sea-level rise

    Get PDF
    This article considers how “rolling covenants” (i.e., covenants on land title that can operate in a “rolling” geographic area to keep pace with sea-level rise) can be used to permit productive use of land in the short term, while ensuring land use can shift over time to allow for coastal ecosystem migration in the medium to long term. We use Australia as a case study, and through analysis of legislation and a series of semistructured interviews, we demonstrate how land title-based covenants can be used to give legal effect to “rolling covenant” arrangements where land is subject to existing use and occupation. We then consider practical issues associated with drafting a rolling covenant arrangement, including an analysis of the types of events or scenarios that could be used as a basis for land use changing (e.g., projected sea-level rise, actual ecosystem migration), and the advantages and disadvantages of each. We conclude that rolling covenants are a viable option for land management in the coastal zone, especially in circumstances where funding sources are available to incentivize uptake. Rolling covenants may provide opportunities for coastal wetlands to be maintained and even enhanced in cover, thereby delivering important ecosystem services (e.g., blue carbon) into the future

    Ranking the risk of CO2 emissions from seagrass soil carbon stocks under global change threats

    Get PDF
    Seagrass meadows are natural carbon storage hotspots at risk from global change threats, and their loss can result in the remineralization of soil carbon stocks and CO2 emissions fueling climate change. Here we used expert elicitation and empirical evidence to assess the risk of CO2 emissions from seagrass soils caused by multiple human-induced, biological and climate change threats. Judgments from 41 experts were synthesized into a seagrass CO2 emission risk score based on vulnerability factors (i.e., spatial scale, frequency, magnitude, resistance and recovery) to seagrass soil organic carbon stocks. Experts perceived that climate change threats (e.g., gradual ocean warming and increased storminess) have the highest risk for CO2 emissions at global spatial scales, while direct threats (i.e., dredging and building of a marina or jetty) have the largest CO2 emission risks at local spatial scales. A review of existing peer-reviewed literature showed a scarcity of studies assessing CO2 emissions following seagrass disturbance, but the limited empirical evidence partly confirmed the opinion of experts. The literature review indicated that direct and long-term disturbances have the greatest negative impact on soil carbon stocks per unit area, highlighting that immediate management actions after disturbances to recover the seagrass canopy can significantly reduce soil CO2 emissions. We conclude that further empirical evidence assessing global change threats on the seagrass carbon sink capacity is required to aid broader uptake of seagrass into blue carbon policy frameworks. The preliminary findings from this study can be used to estimate the potential risk of CO2 emissions from seagrass habitats under threat and guide nature-based solutions for climate change mitigation

    Fingerprinting blue carbon: Rationale and tools to determine the source of organic carbon in marine depositional environments

    Get PDF
    Blue carbon is the organic carbon in oceanic and coastal ecosystems that is captured on centennial to millennial timescales. Maintaining and increasing blue carbon is an integral component of strategies to mitigate global warming. Marine vegetated ecosystems (especially seagrass meadows, mangrove forests, and tidal marshes) are blue carbon hotspots and their degradation and loss worldwide have reduced organic carbon stocks and increased CO2 emissions. Carbon markets, and conservation and restoration schemes aimed at enhancing blue carbon sequestration and avoiding greenhouse gas emissions, will be aided by knowing the provenance and fate of blue carbon. We review and critique current methods and the potential of nascent methods to track the provenance and fate of organic carbon, including: bulk isotopes, compound-specific isotopes, biomarkers, molecular properties, and environmental DNA (eDNA). We find that most studies to date have used bulk isotopes to determine provenance, but this approach often cannot distinguish the contribution of different primary producers to organic carbon in depositional marine environments. Based on our assessment, we recommend application of multiple complementary methods. In particular, the use of carbon and nitrogen isotopes of lipids along with eDNA have a great potential to identify the source and quantify the contribution of different primary producers to sedimentary organic carbon in marine ecosystems. Despite the promising potential of these new techniques, further research is needed to validate them. This critical overview can inform future research to help underpin methodologies for the implementation of blue carbon focused climate change mitigation schemes

    Landcover change in mangroves of Fiji: implications for climate change mitigation and adaptation in the Pacific

    Get PDF
    Mangrove coverage in Fiji is among the highest of all Pacific island nations. These ecosystems store disproportionate amounts of carbon, provide critically important resources for communities, and protect coastal communities against the impacts of tropical cyclones. They are therefore vital in mitigating and adapting to the impacts of climate change. An improved understanding of both the scale and drivers of mangrove loss in Fiji can underpin sustainable management strategies and achieve climate change mitigation and adaptation goals. In this study we assessed mangrove cover, landcover change, and drivers of landcover change for Fiji between 2001 and 2018,as well as the impacts of landcover change on the structural characteristics of mangroves at selected sites on the Fijian island of Viti Levu. Results were then framed within the context of developing management responses, including the potential to develop forest carbon projects. We found Fiji’s mangrove estate to be 65,243 ha, with a loss of 1135 ha between 2001 and 2018 and an annual rate of loss of 0.11%. Tropical cyclones accounted for 77% of loss (~870 ha), with highest losses along the northern coastlines of Viti Levu and Vanua Levu. Mangrove structural characteristics showed high variability in the level of damage incurred, with taller riverine and hinterland vegetation sustaining greater levels of damage than coastal fringing or scrub mangroves. There was no tropical cyclone damage evident along the southern coastline of Viti Levu, with small-scale harvesting the predominate driver of loss in this region. Because of the large effect of cyclone damage on mangroves in the region, small to medium scale restoration projects may be appropriate interventions to increase mangrove cover and carbon stocks. Where harvesting of mangroves occurs, improved management to avoid deforestation could also provide opportunities to maintain mangrove cover and carbon stocks
    corecore