2 research outputs found

    Time-Clamped, RPE-Matched Treadmill Activity and Interactive Video Game Dancing Differ in Step Count But Not Heart Rate Response

    Get PDF
    Background: Participation in regular moderate or vigorous physical activity (MVPA) results in numerous health benefits. Task enjoyment is a known antecedent and promoter of regular activity engagement. Participation in interactive video gaming has increased in recent years. Purpose: The aims of the present investigation were to: 1) determine heart rate (HR) and step count outcomes of time-clamped and RPE-matched interactive video game dancing (VGD) and treadmill activity; 2) characterize the suitability of VGD to achieve MVPA designation; and, 3) investigate step count outcomes recorded by pedometry and accelerometry. Methods: Subjects underwent three testing sessions with the latter two randomized. During the familiarization visit, the perceived exertion (Borg RPE) of an interactive VGD activity was determined and a treadmill speed that resulted in an RPE-matched exertion level was identified through incremental increases in treadmill speed. On subsequent visits, subjects completed 15 minutes of VGD or RPE-matched treadmill activity. HR and step count were measured during both sessions. Results: Nine participants (Age 19.8 ± 1.6; 5 males; 4 females) volunteered. With time-clamped and RPE-matched, the average HR for dancing 154.7 (± 21.8) and treadmill activity 157.8 (± 25.1) were not different (p = 0.698). The selected dances for the VGD activity resulted in 8/9 subjects exercising at MVPA intensity according to percent of predicted maximal HR (threshold of 64% maximal HR; equation: 207 – 0.7*Age). Steps completed during dancing and treadmill activity according to pedometry were 1510 (± 488) and 2066 (± 247), respectively, with the difference being significant (p = 0.001). Steps completed during dancing and the treadmill activity according to accelerometry were 988 (± 256) and 1938 (± 119), respectively, with the difference again significant (p \u3c 0.001). The within-mode, between-device step count (pedometer vs. accelerometer, respectively) were also of interest. For dancing, a significant difference (p \u3c 0.001) was noted as 1510 (± 488) vs. 988 (± 256) steps. For treadmill activity, the disparity between 2066 (± 247) vs. 1938 (± 119) was also different (p = 0.042). Discussion: The HR response of a VGD activity was not different than a time-clamped, RPE-matched treadmill activity. Furthermore, VGD achieved designation as MVPA intensity in 8/9 subjects with the lone subject failing to achieve moderate designation by a single beat. Of note, objectively determined step count varied by mode and measuring device illustrating the need to employee prudency when selecting measuring technique for step count during rhythmic vs. non-rhythmic PA

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore