1,294 research outputs found

    Vertical Structure of Stationary Accretion Disks with a Large-Scale Magnetic Field

    Full text link
    In earlier works we pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because the hydrodynamic and/or magnetorotational (MRI) instabilities are suppressed high in the disk where the magnetic and radiation pressures are larger than the plasma thermal pressure. Here, we calculate the vertical profiles of the {\it stationary} accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity and the fact that the turbulence vanishes at the surface of the disk. Also, here we require that the radial accretion speed be zero at the disk's surface and we assume that the ratio of the turbulent viscosity to the turbulent magnetic diffusivity is of order unity. Thus at the disk's surface there are three boundary conditions. As a result, for a fixed dimensionless viscosity α\alpha-value, we find that there is a definite relation between the ratio R{\cal R} of the accretion power going into magnetic disk winds to the viscous power dissipation and the midplane plasma-β\beta, which is the ratio of the plasma to magnetic pressure in the disk. For a specific disk model with R{\cal R} of order unity we find that the critical value required for a stationary solution is βc2.4r/(αh)\beta_c \approx 2.4r/(\alpha h), where hh the disk's half thickness. For weaker magnetic fields, β>βc\beta > \beta_c, we argue that the poloidal field will advect outward while for β<βc\beta< \beta_c it will advect inward. Alternatively, if the disk wind is negligible (R1{\cal R} \ll 1), there are stationary solutions with ββc\beta \gg \beta_c.Comment: 5 pages, 3 figure

    Accretion into black holes with magnetic fields, and relativistic jets

    Full text link
    We discuss the problem of the formation of a large-scale magnetic field in the accretion disks around black holes, taking into account the non-uniform vertical structure of the disk. The high electrical conductivity of the outer layers of the disk prevents the outward diffusion of the magnetic field. This implies a stationary state with a strong magnetic field in the inner parts of the accretion disk close to the black hole, and zero radial velocity at the surface of the disk. Structure of advective accretion disks is investigated, and conditions for formation of optically thin regions in central parts of the accretion disk are found. The problem of jet collimation by magneto-torsion oscillations is considered.Comment: 6 pages, 4 figure

    Field Evaluations of Herbicides on Vegetable, Small Fruit, and Ornamental Crops, 2000, 2001, & 2002

    Get PDF
    Field evaluations of herbicides provide the chemical industry, governmental agencies, such as IR-4, and the Arkansas Agricultural Experiment Station with an evaluation of herbicide performance on small fruit, vegetable, and ornamental crops grown under Arkansas conditions. This report provides a means for disseminating information to interested private and public service weed scientists

    Three Disk Oscillation Modes of Rotating Magnetized Neutron Stars

    Full text link
    We discuss three specific modes of accretion disks around rotating magnetized neutron stars which may explain the separations of the kilo Hertz quasi periodic oscillations (QPO) seen in low mass X-ray binaries. The existence of these modes requires that there be a maximum in the angular velocity of the accreting material, and that the fluid is in stable, nearly circular motion near this maximum rather than moving rapidly towards the star or out of the disk plane into funnel flows. It is presently not known if these conditions occur, but we are exploring this with 3D magnetohydrodynamic simulations and will report the results elsewhere. The first mode is a corotation mode which is radially trapped in the vicinity of the maximum of the disk rotation rate and is unstable. The second mode, relevant to relatively slowly rotating stars, is a magnetically driven eccentric (m=1m=1) oscillation of the disk excited at a Lindblad radius in the vicinity of the maximum of the disk rotation. The third mode, relevant to rapidly rotating stars, is a magnetically coupled eccentric (m=1m=1) and an axisymmetric (m=0m=0) radial disk perturbation which has an inner Lindblad radius also in the vicinity of the maximum of the disk rotation. We suggest that the first mode is associated with the upper QPO frequency, νu\nu_u, the second with the lower QPO frequency, ν=νuν\nu_\ell =\nu_u-\nu_*, and the third with the lower QPO frequency, ν=νuν/2\nu_\ell=\nu_u-\nu_*/2, where ν\nu_* is the star's rotation rate.Comment: 6 pages, 2 figure

    Relativistic Jets from Accretion Disks

    Full text link
    The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully-electromagnetic, particle-in-cell simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.Comment: 7 pages, 3 figures, Proc. of High Energy Density Astrophysics Conf., 200
    corecore