133 research outputs found
Structures of solid hydrogen at 300K
We present results predicting experimentally measurable structural quantities
from molecular dynamics studies of hydrogen. In doing this, we propose a
paradigm shift for experimentalists -- that the predictions from such
calculations should be seen as the most likely hypotheses. Specifically, the
experimental results should be aiming to distinguish between the candidate
low-energy structures, rather than aiming to solve the simplest structure
consistent with the data. We show that the room temperature X-ray diffraction
patterns for hydrogen phases I, III, IV and V are very similar, with only small
peaks denoting symmetry-breaking from the hcp Phase I. Because they incorporate
atomic displacements the XRD patterns implied by molecular dynamics
calculations are very different from those arising from the static minimum
enthalpy structures found by structure searching. Simulations also show that
within Phase I the molecular becomes increasingly confined to the basal plane
and suggest the possibility of an unusual critical point terminating the Phase
I-III boundary line
Pressure-induced Miscibility Increase of CH4 in H2O: A Computational Study Using Classical Potentials
Methane and water demix under normal (ambient) pressure and temperature conditions, due to the polar nature of water and the apolar nature of methane. Recent experimental work has shown, though, that increasing the pressure to values between 1 and 2 GPa (10 to 20 kbar) leads to a marked increase of methane solubility in water, for temperatures which are well below the critical temperature for water. Here we perform molecular dynamics simulations based on classical force fields – which are well-used and have been validated at ambient conditions – for different values of pressure and temperature. We find the expected increase in miscibility for mixtures of methane and supercritical water; however our model fails to reproduce the experimentally observed increase in methane solubility at large pressures and below the critical temperature of water. This points to the need to develop more accurate force fields for methane and
methane-water mixtures under pressure
Ammonia Mono Hydrate IV: An Attempted Structure Solution
The mixed homonuclear and heteronuclear hydrogen bonds in ammonia hydrates have been of interest for several decades. In this manuscript, a neutron powder diffraction study is presented to investigate the structure of ammonia monohydrate IV at 170 K at an elevated pressure of 3–5 GPa. The most plausible structure that accounts for all features in the experimental pattern was found in the P21/c space group and has the lattice parameters a=5.487(3) Å, b=19.068(4) Å, c=5.989(3) Å, and β=99.537(16) deg. While the data quality limits discussion to a proton-ordered structure, the structure presented here sheds light on an important part of the ammonia–water phase diagram
High-pressure single-crystal neutron diffraction to 10 GPa by angle-dispersive techniques
Techniques have been developed that allow the measurement of accurate single-crystal neutron-diffraction data at pressures up to 10 GPa, using angle-dispersive methods. High-quality data have been collected up to 10 GPa, to a resolution of sinθ/λ ≃ 1.5 Å−1, from samples of size 3–4 mm^{3}. This article presents the methods developed to mount and centre the sample accurately on the instrument; to reduce the background and hence increase the precision of the measured reflection intensities; and to increase further the accessible region of reciprocal space with a single sample loading. Developments are also highlighted, with a view to increasing the range of both science and pressures that can be achieved at the Institut Laue–Langevin reactor source using single-crystal techniques.</jats:p
GAMA: towards a physical understanding of galaxy formation
The Galaxy And Mass Assembly (GAMA) project is the latest in a tradition of
large galaxy redshift surveys, and is now underway on the 3.9m Anglo-Australian
Telescope at Siding Spring Observatory. GAMA is designed to map extragalactic
structures on scales of 1kpc - 1Mpc in complete detail to a redshift of z~0.2,
and to trace the distribution of luminous galaxies out to z~0.5. The principal
science aim is to test the standard hierarchical structure formation paradigm
of Cold Dark Matter (CDM) on scales of galaxy groups, pairs, discs, bulges and
bars. We will measure (1) the Dark Matter Halo Mass Function (as inferred from
galaxy group velocity dispersions); (2) baryonic processes, such as star
formation and galaxy formation efficiency (as derived from Galaxy Stellar Mass
Functions); and (3) the evolution of galaxy merger rates (via galaxy close
pairs and galaxy asymmetries). Additionally, GAMA will form the central part of
a new galaxy database, which aims to contain 275,000 galaxies with
multi-wavelength coverage from coordinated observations with the latest
international ground- and space-based facilities: GALEX, VST, VISTA, WISE,
HERSCHEL, GMRT and ASKAP. Together, these data will provide increased depth
(over 2 magnitudes), doubled spatial resolution (0.7"), and significantly
extended wavelength coverage (UV through Far-IR to radio) over the main SDSS
spectroscopic survey for five regions, each of around 50 deg^2. This database
will permit detailed investigations of the structural, chemical, and dynamical
properties of all galaxy types, across all environments, and over a 5 billion
year timeline.Comment: GAMA overview which appeared in the October 2009 issue of Astronomy &
Geophysics, ref: Astron.Geophys. 50 (2009) 5.1
The Angular Correlation Function of Galaxies from Early SDSS Data
The Sloan Digital Sky Survey is one of the first multicolor photometric and
spectroscopic surveys designed to measure the statistical properties of
galaxies within the local Universe. In this Letter we present some of the
initial results on the angular 2-point correlation function measured from the
early SDSS galaxy data. The form of the correlation function, over the
magnitude interval 18<r*<22, is shown to be consistent with results from
existing wide-field, photographic-based surveys and narrower CCD galaxy
surveys. On scales between 1 arcminute and 1 degree the correlation function is
well described by a power-law with an exponent of ~ -0.7. The amplitude of the
correlation function, within this angular interval, decreases with fainter
magnitudes in good agreement with analyses from existing galaxy surveys. There
is a characteristic break in the correlation function on scales of
approximately 1-2 degrees. On small scales, < 1', the SDSS correlation function
does not appear to be consistent with the power-law form fitted to the 1'<
theta <0.5 deg data. With a data set that is less than 2% of the full SDSS
survey area, we have obtained high precision measurements of the power-law
angular correlation function on angular scales 1' < theta < 1 deg, which are
robust to systematic uncertainties. Because of the limited area and the highly
correlated nature of the error covariance matrix, these initial results do not
yet provide a definitive characterization of departures from the power-law form
at smaller and larger angles. In the near future, however, the area of the SDSS
imaging survey will be sufficient to allow detailed analysis of the small and
large scale regimes, measurements of higher-order correlations, and studies of
angular clustering as a function of redshift and galaxy type
A Chiral Gas-Hydrate Structure Common to the Carbon Dioxide-Water and Hydrogen-Water Systems
We
present full in situ structural solutions of carbon dioxide
hydrate-II and hydrogen hydrate <i>C</i><sub>0</sub> at
elevated pressures using neutron and X-ray diffraction. We find both
hydrates adopt a common water network structure. The structure exhibits
several features not previously found in hydrates; most notably it
is chiral and has large open spiral channels along which the guest
molecules are free to move. It has a network that is unrelated to
any experimentally known ice, silica, or zeolite network but is instead
related to two Zintl compounds. Both hydrates are found to be stable
in electronic structure calculations, with hydration ratios in very
good agreement with experiment
KL Estimation of the Power Spectrum Parameters from the Angular Distribution of Galaxies in Early SDSS Data
We present measurements of parameters of the 3-dimensional power spectrum of
galaxy clustering from 222 square degrees of early imaging data in the Sloan
Digital Sky Survey. The projected galaxy distribution on the sky is expanded
over a set of Karhunen-Loeve eigenfunctions, which optimize the signal-to-noise
ratio in our analysis. A maximum likelihood analysis is used to estimate
parameters that set the shape and amplitude of the 3-dimensional power
spectrum. Our best estimates are Gamma=0.188 +/- 0.04 and sigma_8L = 0.915 +/-
0.06 (statistical errors only), for a flat Universe with a cosmological
constant. We demonstrate that our measurements contain signal from scales at or
beyond the peak of the 3D power spectrum. We discuss how the results scale with
systematic uncertainties, like the radial selection function. We find that the
central values satisfy the analytically estimated scaling relation. We have
also explored the effects of evolutionary corrections, various truncations of
the KL basis, seeing, sample size and limiting magnitude. We find that the
impact of most of these uncertainties stay within the 2-sigma uncertainties of
our fiducial result.Comment: Fig 1 postscript problem correcte
Galaxy Clustering in Early SDSS Redshift Data
We present the first measurements of clustering in the Sloan Digital Sky
Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies
with redshifts 5,700 km/s < cz < 39,000 km/s, distributed in several long but
narrow (2.5-5 degree) segments, covering 690 square degrees. For the full,
flux-limited sample, the redshift-space correlation length is approximately 8
Mpc/h. The two-dimensional correlation function \xi(r_p,\pi) shows clear
signatures of both the small-scale, ``fingers-of-God'' distortion caused by
velocity dispersions in collapsed objects and the large-scale compression
caused by coherent flows, though the latter cannot be measured with high
precision in the present sample. The inferred real-space correlation function
is well described by a power law, \xi(r)=(r/6.1+/-0.2 Mpc/h)^{-1.75+/-0.03},
for 0.1 Mpc/h < r < 16 Mpc/h. The galaxy pairwise velocity dispersion is
\sigma_{12} ~ 600+/-100 km/s for projected separations 0.15 Mpc/h < r_p < 5
Mpc/h. When we divide the sample by color, the red galaxies exhibit a stronger
and steeper real-space correlation function and a higher pairwise velocity
dispersion than do the blue galaxies. The relative behavior of subsamples
defined by high/low profile concentration or high/low surface brightness is
qualitatively similar to that of the red/blue subsamples. Our most striking
result is a clear measurement of scale-independent luminosity bias at r < 10
Mpc/h: subsamples with absolute magnitude ranges centered on M_*-1.5, M_*, and
M_*+1.5 have real-space correlation functions that are parallel power laws of
slope ~ -1.8 with correlation lengths of approximately 7.4 Mpc/h, 6.3 Mpc/h,
and 4.7 Mpc/h, respectively.Comment: 51 pages, 18 figures. Replaced to match accepted ApJ versio
- …