16,035 research outputs found
Charged spin 1/2 particle in an arbitrary magnetic field in two spatial dimensions: a supersymmetric quantum mechanical system
It is shown that the 2 X 2 matrix Hamiltonian describing the dynamics of a
charged spin 1/2 particle with g-factor 2 moving in an arbitrary, spatially
dependent, magnetic field in two spatial dimensions can be written as the
anticommuator of a nilpotent operator and its hermitian conjugate.
Consequently, the Hamiltonians for the two different spin projections form
partners of a supersymmetric quantum mechanical system. The resulting
supersymmetry algebra can then be exploited to explicitly construct the exact
zero energy ground state wavefunction for the system. Modulo this ground state,
the remainder of the eigenstates and eigenvalues of the two partner
Hamiltonians form positive energy degenerate pairs. We also construct the
spatially asymptotic form of the magnetic field which produces a finite
magnetic flux and associated zero energy normalizable ground state
wavefunction.Comment: 10 pages, LaTe
Realizable Hamiltonians for Universal Adiabatic Quantum Computers
It has been established that local lattice spin Hamiltonians can be used for
universal adiabatic quantum computation. However, the 2-local model
Hamiltonians used in these proofs are general and hence do not limit the types
of interactions required between spins. To address this concern, the present
paper provides two simple model Hamiltonians that are of practical interest to
experimentalists working towards the realization of a universal adiabatic
quantum computer. The model Hamiltonians presented are the simplest known
QMA-complete 2-local Hamiltonians. The 2-local Ising model with 1-local
transverse field which has been realized using an array of technologies, is
perhaps the simplest quantum spin model but is unlikely to be universal for
adiabatic quantum computation. We demonstrate that this model can be rendered
universal and QMA-complete by adding a tunable 2-local transverse XX coupling.
We also show the universality and QMA-completeness of spin models with only
1-local Z and X fields and 2-local ZX interactions.Comment: Paper revised and extended to improve clarity; to appear in Physical
Review
Why P/OF should look for evidences of over-dense structures in solar flare hard X-ray sources
White-light and hard X-ray (HXR) observations of two white-light flares (WLFs) show that if the radiative losses in the optical continuum are powered by fast electrons directly heating the WLF source, then the column density constraints imposed by the finite range of the electrons requires that the WLF consist of an over-dense region in the chromosphere, with density exceeding 10 to the 14th power/cu cm. Thus, we recommend that P/OF search for evidences of over-dense structures in HXR images obtained simultaneously with optical observations of flares
Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii
This is the final version of the article. Available from Frontiers Media via the DOI in this record.We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change.This research was funded by a grant from Shell Research Ltd
Complete genome sequence of a free-living Vibrio furnissii sp. nov. strain (NCTC 11218)
This is the final version. Available from American Society for Microbiology via the DOI in this record. Shell Research Limited
Integrated scalable cyto-technology for recombinant protein bioprocessing
Biological knowledge of infectious diseases and other diseases for which vaccines may provide therapeutic benefits, such as cancer, is growing at an accelerated pace. The implications of this knowledge are improved stratification of diseases, possibilities for personalized treatments, and explicit understanding of protective immune responses to be elicited by vaccines. With this knowledge, it is becoming increasingly feasible to engineer vaccines for specific responses rather than relying on empirical development. Despite this potential, the challenge of routine, low-cost manufacturing of vaccines creates a barrier to transforming health care in both high- and low-resource countries. Vaccines today do not benefit from well-defined, platform-like processes for manufacturing, and concepts such as continuous bioprocessing remain largely within the realm of biopharmaceutical products. The InSCyT platform is an advanced prototype manufacturing system that provides integrated and automated production and purification of multiple protein therapeutics. The system allows end-to-end manufacturing of 100\u27s to 10,000\u27s of doses of recombinant protein drugs in days. It uses a state-of-the-art approach to process design and implementation that takes advantage of a fast-growing, tractable microbial host (Pichia pastoris) and continuous processing for automated, hands-free purification through simple 2- or 3-stage chromatographic processes. The platform design is highly modular, allowing facile process development and process deployment for multiple products. This feature emerges from the predictable behavior of the fermentation and cell culture fluids, and rapid cloning of new molecules, that together facilitate fast development of entirely new processes in weeks. To date, this system has been used to reproducibly manufacture high-quality human growth hormone (hGH), granulocyte-colony stimulating factor (G-CSF), and interferon-α2b (IFN-α2b) in an integrated, automated manner. The speed of production using the InSCyT prototype allows volumetric productivities that compare favorably to those for mammalian-based production. This talk will outline the design and capabilities of the InSCyT system, demonstrate the quality of biologic drugs made to date on the system, and outline opportunities for advancing the platform to provide new capabilities in manufacturing recombinant proteins for use in vaccines. As part of a Gates Foundation-funded Grand Challenge called ULTRA, we have begun to assess the feasibility of manufacturing millions of doses of a trivalent recombinant rotavirus vaccine annually on a small-scale production system like InSCyT. Integrated bioprocessing enabled by systems such as these could offer potential advantages for routine production in local regions with minimal infrastructure, and for democratization of manufacturing capacity for new vaccine concepts and personalized treatments in cancer
- …