218 research outputs found
A discrete slug population model determined by egg production
Slugs are significant pests in agriculture (as well as a nuisance to gardeners), and it is therefore important to understand their population dynamics for the construction of efficient and effective control measures. Differential equation models of slug populations require the inclusion of large (variable) temporal delays, and strong seasonal forcing results in a non-autonomous system. This renders such models open to only a limited amount of rigorous analysis. In this paper, we derive a novel batch model based purely upon the quantity of eggs produced at different times of the year. This model is open to considerable reduction; from the resulting two variable discrete-time system it is possible to reconstruct the dynamics of the full population across the year and give conditions for extinction or global stability and persistence. Furthermore, the steady state temporal population distribution displays qualitatively different behavior with only small changes in the survival probability of slugs. The model demonstrates how small variations in the favorability of different years may result in widely different slug population fluctuations between consecutive years, and is in good agreement with field data
Engineering adenoviral vectors with improved GBM selectivity
Glioblastoma (GBM) is the most common and aggressive adult brain cancer with an average survival rate of around 15 months in patients receiving standard treatment. Oncolytic adenovirus expressing therapeutic transgenes represent a promising alternative treatment for GBM. Of the many human adenoviral serotypes described to date, adenovirus 5 (HAdV-C5) has been the most utilised clinically and experimentally. However, the use of Ad5 as an anti-cancer agent may be hampered by naturally high seroprevalence rates to HAdV-C5 coupled with the infection of healthy cells via native receptors. To explore whether alternative natural adenoviral tropisms are better suited to GBM therapeutics, we pseudotyped an HAdV-C5-based platform using the fibre knob protein from alternative serotypes. We demonstrate that the adenoviral entry receptor coxsackie, adenovirus receptor (CAR) and CD46 are highly expressed by both GBM and healthy brain tissue, whereas Desmoglein 2 (DSG2) is expressed at a low level in GBM. We demonstrate that adenoviral pseudotypes, engaging CAR, CD46 and DSG2, effectively transduce GBM cells. However, the presence of these receptors on non-transformed cells presents the possibility of off-target effects and therapeutic transgene expression in healthy cells. To enhance the specificity of transgene expression to GBM, we assessed the potential for tumour-specific promoters hTERT and survivin to drive reporter gene expression selectively in GBM cell lines. We demonstrate tight GBM-specific transgene expression using these constructs, indicating that the combination of pseudotyping and tumour-specific promoter approaches may enable the development of efficacious therapies better suited to GBM
A quantitative PCR method to quantify ruminant DNA in porcine crude heparin
Heparin is a well-known glycosaminoglycan extracted from porcine intestines. Increased vigilance for transmissible spongiform encephalopathy in animal-derived pharmaceuticals requires methods to prevent the introduction of heparin from ruminants into the supply chain. The sensitivity, specificity, and precision of the quantitative polymerase chain reaction (PCR) make it a superior analytical platform for screening heparin raw material for bovine-, ovine-, and caprine-derived material. A quantitative PCR probe and primer set homologous to the ruminant Bov-A2 short interspersed nuclear element (SINE) locus (Mendoza-Romero et al. J. Food Prot. 67:550–554, 2004) demonstrated nearly equivalent affinities for bovine, ovine, and caprine DNA targets, while exhibiting no cross-reactivity with porcine DNA in the quantitative PCR method. A second PCR primer and probe set, specific for the porcine PRE1 SINE sequence, was also developed to quantify the background porcine DNA level. DNA extraction and purification was not necessary for analysis of the raw heparin samples, although digestion of the sample with heparinase was employed. The method exhibits a quantitation range of 0.3–3,000 ppm ruminant DNA in heparin. Validation parameters of the method included accuracy, repeatability, precision, specificity, range, quantitation limit, and linearity
Statistical tools for transgene copy number estimation based on real-time PCR
Background
As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Results
Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. Conclusion
These statistical methods allow the real-time PCR-based transgene copy number estimation to be more reliable and precise with a proper statistical estimation. Proper confidence intervals are necessary for unambiguous prediction of trangene copy number. The four different statistical methods are compared for their advantages and disadvantages. Moreover, the statistical methods can also be applied for other real-time PCR-based quantification assays including transfection efficiency analysis and pathogen quantification
Communicating Auditory Impairments Using Electroacoustic Composition
Changes in human sensory perception can occur for a variety of reasons. In the case of distortions or transformations in the human auditory system, the aetiology may include factors such as medical conditions affecting cognition or physiology, interaction of the ears with mechanical waves, or stem from chemically induced sources, such the consumption of alcohol. These changes may be permanent, intermittent, or temporary. In order to communicate such effects to an audience in an accessible, and easily understood manner, a series of electroacoustic compositions were produced. This concept follows on from previous work on the theme of representing auditory hallucinations. Specifically, these compositions relate to auditory impairments that humans can experience due to tinnitus or through the consumption of alcohol. In the case of tinnitus, whilst much is known about the causes and symptoms, the experience of what it is like to live with tinnitus is less explored and those who have acquired the condition may often feel frustration when trying to convey the experience of ‘what it is like’ for them. In terms of impairment from alcohol consumption, whilst there is much hearsay, little research exists on the immediate and short-term effects of alcohol consumption on the human auditory system, despite over half of the UK population reported as consuming alcohol in 2017. The methodology employed to design these compositions draws upon scientific research findings, including experimental and explorative studies involving human participants, coupled with electroacoustic composition techniques. The pieces are typically constructed by mixing field recordings with synthesised materials and incorporating a range of temporal and frequency domain manipulations to the elements therein. In this way, the listener is able to experience the phenomenon in a recognisable context, where distortions of reality can be emulated to varying degrees. It is intended that these compositions can serve as easily accessible and understood examples of auditory impairments and that they might find utility in the communication of symptoms to those who have never experienced the underlying causes or conditions. This presents opportunities for pieces like these to be used in scenarios such as education and public health awareness campaigns
Women's gambling behaviour, product preferences, and perceptions of product harm: Differences by age and gambling risk status
Background: Women's participation in, and harm from gambling, is steadily increasing. There has been very limited research to investigate how gambling behaviour, product preferences, and perceptions of gambling harm may vary across subgroups of women. Methods: This study surveyed a convenience sample of 509 women from Victoria and New South Wales, Australia. Women were asked a range of questions about their socio-demographic characteristics and gambling behaviour. Focusing on four gambling products in Australia-casino gambling, electronic gambling machines (EGMs), horse betting, and sports betting-women were asked about their frequency of participation, their product preferences, and perceptions of product harms. The sample was segmented a priori according to age and gambling risk status, and differences between groups were identified using Chi-square tests and ANOVAs. Thematic analysis was used to interpret qualitative data. Results: Almost two thirds (n=324, 63.7%) of women had engaged with one of the four products in the previous 12 months. Compared to other age groups, younger women aged 16-34 years exhibited a higher proportion of problem gambling, gambled more frequently, and across more products. While EGMs were the product gambled on most frequently by women overall, younger women were significantly more likely to bet on sports and gamble at casinos relative to older women. Qualitative data indicated that younger women engaged with gambling products as part of a 'night out', 'with friends', due to their 'ease of access' and perceived 'chance of winning big'. There were significant differences in the perceptions of the harms associated with horse and sports betting according to age and gambling risk status, with younger women and gamblers perceiving these products as less harmful. Conclusions: This study highlights that there are clear differences in the gambling behaviour, product preferences, and perceptions of product harms between subgroups of women. A gendered approach will enable public health researchers and policymakers to ensure that the unique factors associated with women's gambling are taken into consideration in a comprehensive public health approach to reducing and preventing gambling harm
Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells.
LCK is a tyrosine kinase that is essential for initiating T-cell antigen receptor (TCR) signaling. A complete understanding of LCK function is constrained by a paucity of methods to quantitatively study its function within live cells. To address this limitation, we generated LCK*, in which a key active-site lysine is replaced by a photocaged equivalent, using genetic code expansion. This strategy enabled fine temporal and spatial control over kinase activity, thus allowing us to quantify phosphorylation kinetics in situ using biochemical and imaging approaches. We find that autophosphorylation of the LCK active-site loop is indispensable for its catalytic activity and that LCK can stimulate its own activation by adopting a more open conformation, which can be modulated by point mutations. We then show that CD4 and CD8, T-cell coreceptors, can enhance LCK activity, thereby helping to explain their effect in physiological TCR signaling. Our approach also provides general insights into SRC-family kinase dynamics
Adaptor SKAP-55 Binds p21ras Activating Exchange Factor RasGRP1 and Negatively Regulates the p21ras-ERK Pathway in T-Cells
While the adaptor SKAP-55 mediates LFA-1 adhesion on T-cells, it is not known whether the adaptor regulates other aspects of signaling. SKAP-55 could potentially act as a node to coordinate the modulation of adhesion with downstream signaling. In this regard, the GTPase p21ras and the extracellular signal-regulated kinase (ERK) pathway play central roles in T-cell function. In this study, we report that SKAP-55 has opposing effects on adhesion and the activation of the p21ras -ERK pathway in T-cells. SKAP-55 deficient primary T-cells showed a defect in LFA-1 adhesion concurrent with the hyper-activation of the ERK pathway relative to wild-type cells. RNAi knock down (KD) of SKAP-55 in T-cell lines also showed an increase in p21ras activation, while over-expression of SKAP-55 inhibited activation of ERK and its transcriptional target ELK. Three observations implicated the p21ras activating exchange factor RasGRP1 in the process. Firstly, SKAP-55 bound to RasGRP1 via its C-terminus, while secondly, the loss of binding abrogated SKAP-55 inhibition of ERK and ELK activation. Thirdly, SKAP-55−/− primary T-cells showed an increased presence of RasGRP1 in the trans-Golgi network (TGN) following TCR activation, the site where p21ras becomes activated. Our findings indicate that SKAP-55 has a dual role in regulating p21ras-ERK pathway via RasGRP1, as a possible mechanism to restrict activation during T-cell adhesion
- …