24 research outputs found

    An Investigation of the Role of Macular Pigment in Attenuating Photostress through Comparison between Blue and Green Photostress Recovery Times

    Get PDF
    Purpose: Photostress recovery time (PSRT) is the time required for the macula to return to its normal functioning after the bleaching of cone photopigments due to light exposure, usually white. This work investigates the role of macular pigment (MP) as an optical filter that attenuates photostress by analyses of PSRT at different wavelengths. Methods: Thirty-nine subjects (19–28 years) were exposed to blue/green photostress varying in irradiance. During photostress, pupil constriction (Cp) was measured. Twenty-seven subjects (20–27 years) were exposed to white photostress. After 25 s of photostress, the time (PSRT) required to read correctly a 0.2 logMAR letter was measured. Correlation was studied between PSRT, CP, and irradiance. Statistical significance of differences between PSRTs was evaluated at Log(irradiance(quanta s−1 cm−2)) = 14 by Student’s t statistics. Results: Cp and PSRT were found linearly correlated to Log(irradiance) for blue, green, and white. At Log(irradiance(quanta s−1 cm−2)) = 14, blue and green mean PSRTs resulted different (p 0.05). Conclusions: MP plays the role of an optical filter attenuating photostress. PSRT was substantially proportional to the number of incident photons corrected for the MP optical absorption, regardless of their wavelength

    Dark-adapted red flash ERGs in healthy adults

    Get PDF
    Purpose: The x-wave of the dark-adapted (DA) ERG to a red flash reflects DA cone function. This exploratory study of healthy adults aimed to investigate changes in the DA red ERG with flash strength and during dark adaptation to optimise visualisation and therefore quantification of the x-wave. Methods: The effect of altering red flash strength was investigated in four subjects by recording ERGs after 20 minutes dark adaptation to red flashes (0.2–2.0 cd s m-2) using skin electrodes and natural pupils. The effect of dark adaptation duration was investigated in 16 subjects during 20 minutes in the dark, by recording DA 1.5 red ERGs at 1, 2, 3, 4, 5, 10, 15 and 20 minutes. Results: For a dark adaption period of 20 minutes, the x-wave was more clearly visualised to weaker (< 0.6 cd s m-2) red flash strengths: to stronger flashes it became obscured by the b-wave. For red flashes of 1.5 cd s m-2, the x-wave was most prominent in ERGs recorded after 1–5 minutes of dark adaptation: with longer dark-adaptation, it was subsumed into the b-wave’s rising edge. Conclusions: This small study suggests that x-wave visibility in healthy subjects after 20 minutes dark adaptation is improved by using flashes weaker than around 0.6 cd s m-2; for flash strengths of 1.5 cd s m-2, x-wave visibility is enhanced by recording after only around 5 minutes of dark adaptation. No evidence was found that interim red flash ERGs affecting the dark-adapted state of the normal retina

    Comparison of blur and magnification effects on stereopsis: overall and meridional, monocularly‐ and binocularly‐induced

    No full text
    Purpose: To determine whether monocularly- and binocularly-induced spherical and meridional blur and aniseikonia had similar effects on stereopsis thresholds. Methods: Twelve participants with normal binocular vision viewed McGill modified random dot stereograms to determine stereoacuities in a four-alternative forced-choice procedure. Astigmatism was induced by placing trial lenses in front of the eyes. Twenty-three conditions were used, consisting of zero (no lens), +1 D and +2 D spheres and cylinders at axes 180, 45 and 90 in front of the right eye, and the following binocular combinations of both lens powers: R × 180/L × 180, R × 45/L × 45, R × 90/L × 90, R sphere/L sphere, R × 180/L × 90, R × 45/L × 135, R × 90/L × 180. Aniseikonia was induced by placing magnifying lenses in front of the eyes. Twenty-three conditions were used, consisting of zero, 6% and 12% overall magnification and both magnifications at axes 180, 45 and 90 in front of the right eye only, and the following binocular combinations using 3% and 6% lenses: R × 90/L × 90, R × 45/L × 45, R × 180/L × 180, R overall/L overall, R × 90/L × 180, R × 45/L × 135, and R × 180/L × 90. Results: Stereopsis losses for binocular blur effects with parallel axes (non-anisometropic) were the same as for monocular blur effects of the same axes, and these were strongly dependent on axis (spherical blur and ×90 had the greatest effects). Binocular blur effects with orthogonal axes had greater effects than with parallel axes, with the axis combination of the former having no effect (e.g. R × 90/L × 180 was similar to R × 45/L × 135). For induced aniseikonia, splitting the magnifications between the eyes improved stereopsis slightly, and the effects were not dependent on axis. Conclusion: Binocular blur affects stereopsis similarly to monocular meridional blur if axes in the two eyes are parallel, whereas the effect is greater if the axes are orthogonal. In meridional aniseikonia, splitting magnification between the right and left lenses produces a small improvement in stereopsis that is independent of axis direction and right/left combination.</p

    Effects of simulated anisometropia and aniseikonia on stereopsis

    No full text
    Purpose: Stereopsis depends on horizontally disparate retinal images but otherwise concordance between eyes. Here we investigate the effect of spherical and meridional simulated anisometropia and aniseikonia on stereopsis thresholds. The aims were to determine effects of meridian, magnitude and the relative effects of the two conditions. Methods: Ten participants with normal binocular vision viewed McGill modified random dot stereograms through synchronised shutter glasses. Stereoacuities were determined using a four-alternative forced-choice procedure. To induce anisometropia, trial lenses of varying power and axes were placed in front of right eyes. Seventeen combinations were used: zero (no lens) and both positive and negative, 1 and 2 D powers, at 45, 90 and 180 axes; spherical lenses were also tested. To induce aniseikonia 17 magnification power and axis combinations were used. This included zero (no lens), and 3%, 6%, 9% and 12% at axes 45, 90 and 180; overall magnifications were also tested. Results: For induced anisometropia, stereopsis loss increased as cylindrical axis rotated from 180° to 90°, at which the loss was similar to that for spherical blur. For example, for 2 D meridional anisometropia threshold increased from 1.53 log sec arc (i.e. 34 sec arc) for x 180 to 1.89 log sec arc (78 sec arc) for x 90. Anisometropia induced with either positive or negative lenses had similar detrimental effects on stereopsis. Unlike anisometropia, the stereopsis loss with induced meridional aniseikonia was not affected by axis and was about 64% of that for overall aniseikonia of the same amount. Approximately, each 1 D of induced anisometropia had the same effect on threshold as did each 6% of induced aniseikonia. Conclusion: The axes of meridional anisometropia but not aniseikonia affected stereopsis. This suggests differences in the way that monocular blur (anisometropia) and interocular shape differences (aniseikonia) are processed during the production of stereopsis.</p

    Use of colour Doppler imaging in ocular blood flow research

    No full text
    The main objective of this report is to encourage consistent quality of testing and reporting within and between centres that use colour Doppler imaging (CDI) for assessment of retrobulbar blood flow. The intention of this review is to standardize methods in CDI assessment that are used widely, but not to exclude other approaches or additional tests that individual laboratories may choose or continue to use.status: publishe
    corecore