16 research outputs found

    Evidence Based Development of a Novel Lateral Fibula Plate (VariAx Fibula) Using a Real CT Bone Data Based Optimization Process During Device Development

    Get PDF
    Development of novel implants in orthopaedic trauma surgery is based on limited datasets of cadaver trials or artificial bone models. A method has been developed whereby implants can be constructed in an evidence based method founded on a large anatomic database consisting of more than 2.000 datasets of bones extracted from CT scans. The aim of this study was the development and clinical application of an anatomically pre-contoured plate for the treatment of distal fibular fractures based on the anatomical database

    Finite Element Analysis of Osteosynthesis Screw Fixation in the Bone Stock: An Appropriate Method for Automatic Screw Modelling

    Get PDF
    The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent bone stock and can be used for further investigations

    Total joint Perioperative Surgical Home: an observational financial review

    No full text
    BACKGROUND: The numbers of people requiring total arthroplasty is expected to increase substantially over the next two decades. However, increasing costs and new payment models in the USA have created a sustainability gap. Ad hoc interventions have reported marginal cost reduction, but it has become clear that sustainability lies only in complete restructuring of care delivery. The Perioperative Surgical Home (PSH) model, a patient-centered and physician-led multidisciplinary system of coordinated care, was implemented at UC Irvine Health in 2012 for patients undergoing primary elective total knee arthroplasty (TKA) or total hip arthroplasty (THA). This observational study examines the costs associated with this initiative. METHODS: The direct cost of materials and services (excluding professional fees and implants) for a random index sample following the Total Joint-PSH pathway was used to calculate per diem cost. Cost of orthopedic implants was calculated based on audit-verified direct cost data. Operating room and post-anesthesia care unit time-based costs were calculated for each case and analyzed for variation. Benchmark cost data were obtained from literature search. Data are presented as mean ± SD (coefficient of variation) where possible. RESULTS: Total per diem cost was 10,042±1,305(1310,042 ± 1,305 (13%) for TKA and 9,952 ± 1,294 (13%) for THA. Literature-reported benchmark per diem cost was 17,588forTKAand17,588 for TKA and 16,267 for THA. Implant cost was 7,482±4,050(547,482 ± 4,050 (54%) for TKA and 9869 ± 1,549 (16%) for THA. Total hospital cost was 17,894±4,270(2417,894 ± 4,270 (24%) for TKA and 20,281 ± 2,057 (10%) for THA. In-room to incision time cost was 1,263±100(81,263 ± 100 (8%) for TKA and 1,341 ± 145 (11%) for THA. Surgery time cost was 1,558±290(191,558 ± 290 (19%) for TKA and 1,930 ± 374 (19%) for THA. Post-anesthesia care unit time cost was 507±187(36507 ± 187 (36%) for TKA and 557 ± 302 (54%) for THA. CONCLUSIONS: Direct hospital costs were driven substantially below USA benchmark levels using the Total Joint-PSH pathway. The incremental benefit of each step in the coordinated care pathway is manifested as a lower average length of stay. We identified excessive variation in the cost of implants and post-anesthesia care
    corecore