30 research outputs found

    Two PAR6 Proteins Become Asymmetrically Localized during Establishment of Polarity in Mouse Oocytes

    Get PDF
    AbstractMeiotic maturation in mammals is characterized by two asymmetric divisions, leading to the formation of two polar bodies and the female gamete. Whereas the mouse oocyte is a polarized cell, molecules implicated in the establishment of this polarity are still unknown. PAR proteins have been demonstrated to play an important role in cell polarity in many cell types, where they control spindle positioning and asymmetric distribution of determinants. Here we show that two PAR6-related proteins have distinct polarized distributions in mouse oocytes. mPARD6a is first localized on the spindle and then accumulates at the pole nearest the cortex during spindle migration. In the absence of microtubules, the chromosomes still migrate to the cortex, and mPARD6a was found associated with the chromosomes and was facing the cortex. mPARD6a is the first identified protein to associate with the spindle during spindle migration and to relocalize to the chromosomes in the absence of microtubule behavior, suggesting a role in spindle migration. The other protein, mPARD6b, was found on spindle microtubules until entry into meiosis II and relocalized to the cortex at the animal pole during metaphase II arrest. mPARD6b is the first identified protein to localize to the animal pole of the mouse oocyte and likely contributes to the polarization of the cortex

    Orientation of Mitotic Spindles during the 8- to 16-Cell Stage Transition in Mouse Embryos

    Get PDF
    Background: Asymmetric cell divisions are involved in the divergence of the first two lineages of the pre-implantation mouse embryo. They first take place after cell polarization (during compaction) at the 8-cell stage. It is thought that, in contrast to many species, spindle orientation is random, although there is no direct evidence for this. Methodology/Principal Findings: Tubulin-GFP and live imaging with a spinning disk confocal microscope were used to directly study spindle orientation in whole embryos undergoing the 8- to 16-cell stage transition. This approach allowed us to determine that there is no predetermined cleavage pattern in 8-cell compacted mouse embryos and that mitotic spindle orientation in live embryo is only modulated by the extent of cell rounding up during mitosis. Conclusions: These results clearly demonstrate that spindle orientation is not controlled at the 8- to 16-cell transition, but influenced by cell bulging during mitosis, thus reinforcing the idea that pre-implantation development is highly regulative and not pre-patterned

    A 3D mechanical model of the early mammalian embryo

    Get PDF
    The early development of the mammalian embryo leads to the formation of a structure composed by an outer layer of polarized cells surrounding an inner mass of nonpolarized cells. Experimental biology has shown that this organization results from changes in cell polarity, cell shape and intercellular contacts at the 8 and 16-cell stages. In order to examine how the physical properties of embryo cells (adhesion, cortical tension) influence the organization of the cells within the embryo, our team has developed a 3D mechanical model of the dividing early embryo, based on cellular Potts models. In this paper we will present the principles of our simulations, the methodology used and we will show that a very simple mechanical model can reproduce the main structural features (geometry, cell arrangement) of the mammalian embryo during its early developmental stages, up to the 16-cell stage

    Control of Vulval Cell Division Number in the Nematode Oscheius/Dolichorhabditis sp. CEW1

    Get PDF
    Spatial patterning of vulval precursor cell fates is achieved through a different two-stage induction mechanism in the nematode Oscheius/Dolichorhabditis sp. CEW1 compared with Caenorhabditis elegans. We therefore performed a genetic screen for vulva mutants in Oscheius sp. CEW1. Most mutants display phenotypes unknown in C. elegans. Here we present the largest mutant category, which affects division number of the vulva precursors P(4-8).p without changing their fate. Among these mutations, some reduce the number of divisions of P4.p and P8.p specifically. Two mutants omit the second cell cycle of all vulval lineages. A large subset of mutants undergo additional rounds of vulval divisions. We also found precocious and retarded heterochronic mutants. Whereas the C. elegans vulval lineage mutants can be interpreted as overall (homeotic) changes in precursor cell fates with concomitant cell cycle changes, the mutants described in Oscheius sp. CEW1 do not affect overall precursor fate and thereby dissociate the genetic mechanisms controlling vulval cell cycle and fate. Laser ablation experiments in these mutants reveal that the two first vulval divisions in Oscheius sp. CEW1 appear to be redundantly controlled by a gonad-independent mechanism and by a gonadal signal that operates partially independently of vulval fate induction

    Control of Vulval Cell Division Number in the Nematode Oscheius/Dolichorhabditis sp. CEW1

    Get PDF
    Spatial patterning of vulval precursor cell fates is achieved through a different two-stage induction mechanism in the nematode Oscheius/Dolichorhabditis sp. CEW1 compared with Caenorhabditis elegans. We therefore performed a genetic screen for vulva mutants in Oscheius sp. CEW1. Most mutants display phenotypes unknown in C. elegans. Here we present the largest mutant category, which affects division number of the vulva precursors P(4-8).p without changing their fate. Among these mutations, some reduce the number of divisions of P4.p and P8.p specifically. Two mutants omit the second cell cycle of all vulval lineages. A large subset of mutants undergo additional rounds of vulval divisions. We also found precocious and retarded heterochronic mutants. Whereas the C. elegans vulval lineage mutants can be interpreted as overall (homeotic) changes in precursor cell fates with concomitant cell cycle changes, the mutants described in Oscheius sp. CEW1 do not affect overall precursor fate and thereby dissociate the genetic mechanisms controlling vulval cell cycle and fate. Laser ablation experiments in these mutants reveal that the two first vulval divisions in Oscheius sp. CEW1 appear to be redundantly controlled by a gonad-independent mechanism and by a gonadal signal that operates partially independently of vulval fate induction

    Inactivation of aPKCλ Reveals a Context Dependent Allocation of Cell Lineages in Preimplantation Mouse Embryos

    Get PDF
    BACKGROUND:During mammalian preimplantation development, lineage divergence seems to be controlled by the interplay between asymmetric cell division (once cells are polarized) and positional information. In the mouse embryo, two distinct cell populations are first observed at the 16-cell stage and can be distinguished by both their position (outside or inside) and their phenotype (polarized or non-polarized). Many efforts have been made during the last decade to characterize the molecular mechanisms driving lineage divergence. METHODOLOGY/PRINCIPAL FINDINGS:In order to evaluate the importance of cell polarity in the determination of cell fate we have disturbed the activity of the apical complex aPKC/PAR6 using siRNA to down-regulate aPKClambda expression. Here we show that depletion of aPKClambda results in an absence of tight junctions and in severe polarity defects at the 16-cell stage. Importantly, we found that, in absence of aPKClambda, cell fate depends on the cellular context: depletion of aPKClambda in all cells results in a strong reduction of inner cells at the 16-cell stage, while inhibition of aPKClambda in only half of the embryo biases the progeny of aPKClambda defective blastomeres towards the inner cell mass. Finally, our study points to a role of cell shape in controlling cell position and thus lineage allocation. CONCLUSION:Our data show that aPKClambda is dispensable for the establishment of polarity at the 8-cell stage but is essential for the stabilization of cell polarity at the 16-cell stage and for cell positioning. Moreover, this study reveals that in addition to positional information and asymmetric cell divisions, cell shape plays an important role for the control of lineage divergence during mouse preimplantation development. Cell shape is able to influence both the type of division (symmetric or asymmetric) and the position of the blastomeres within the embryo

    Control of vulval competence and centering in the nematode Oscheius sp. 1 CEW1.

    No full text
    To compare vulva development mechanisms in the nematode Oscheius sp. 1 to those known in Caenorhabditis elegans, we performed a genetic screen for vulva mutants in Oscheius sp. 1 CEW1. Here we present one large category of mutations that we call cov, which affect the specification of the Pn.p ventral epidermal cells along the antero-posterior axis. The Pn.p cells are numbered from 1 to 12 from anterior to posterior. In wild-type Oscheius sp. 1 CEW1, the P(4-8).p cells are competent to form the vulva and the progeny of P(5-7).p actually form the vulva, with the descendants of P6.p adopting a central vulval fate. Among the 17 mutations (defining 13 genes) that we characterize here, group 1 mutations completely or partially abolish P(4-8).p competence, and this correlates with early fusion of the Pn.p cells to the epidermal syncytium. In this group, we found a putative null mutation in the lin-39 HOM-C homolog, the associated phenotype of which could be weakly mimicked by injection of a morpholino against Osp1-lin-39 in the mother's germ line. Using cell ablation in a partially penetrant competence mutant, we show that vulval competence is partially controlled by a gonadal signal. Most other mutants found in the screen display phenotypes unknown in C. elegans. Group 2 mutants show a partial penetrance of Pn.p competence loss and an abnormal centering of the vulva on P5.p, suggesting that these two processes are coregulated by the same pathway in Oscheius sp. 1. Group 3 mutants display an enlarged competence group that includes P3.p, thus demonstrating the existence of a specific mechanism inhibiting P3.p competence. Group 4 mutants display an abnormal centering of the vulval pattern on P7.p and suggest that a specific mechanism centers the vulval pattern on a single Pn.p cell

    Spindle orientation in 8-cell stage embryos.

    No full text
    <p>A: Schematic representation of the probability of spindle orientation distribution. Since the spindle can orient in a 3D space, and not on a 2D plane, the probability for the spindle to be in a given range of angles is proportional to a «stripe» of the surface of a sphere. Therefore, this probability is proportional to cosine (α) rather than to α itself. This is illustrated on these three colours balloons, viewed from the top and the side. If the ranges are proportional to α, then the surfaces covered by each of the three colours are different (top). When the ranges are proportional to cosine (α), each colour covers the same area of the surface (bottom). B: Distribution of α according to cosine (α): the cosine of the angles (X axis) shown corresponds to multiple of 0.166 (since cosine (α) varies between 0 and 1). The Y axis corresponds to the percentage of spindle oriented with a given angle. A non-random distribution is observed, with an increase for the two extreme ranges suggesting that spindle orientation is not completely random. The dash line corresponds to the expected percentage for each “α” angle value if the spindle orientation was random.</p
    corecore