548 research outputs found

    Precision control of thermal transport in cryogenic single-crystal silicon devices

    Get PDF
    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path ℓ\ell is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than ℓ\ell, even when the surface is fairly smooth, 5-10 nm rms, and the peak thermal wavelength is 0.6 μ\mum. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order ℓ\ell, the conductance is dominated by ballistic transport and is effectively set by the beam area. We have demonstrated a uniformity of ±\pm8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors

    Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes

    Full text link
    We report the observation of thermally driven mechanical vibrations of suspended doubly clamped carbon nanotubes, grown by chemical vapor deposition (CVD). Several experimental procedures are used to suspend carbon nanotubes. The vibration is observed as a blurring in images taken with a scanning electron microscope. The measured vibration amplitudes are compared with a model based on linear continuum mechanics.Comment: pdf including figures, see: http://www.unibas.ch/phys-meso/Research/Papers/2003/NT-Thermal-Vibrations.pd

    Measurement of the Induced Proton Polarization P_n in the 12C(e,e'\vec{p}) Reaction

    Full text link
    The first measurements of the induced proton polarization, P_n, for the 12C (e,e'\vec{p}) reaction are reported. The experiment was performed at quasifree kinematics for energy and momentum transfer (\omega,q) \approx (294 MeV, 756 MeV/c) and sampled a recoil momentum range of 0-250 MeV/c. The induced polarization arises from final-state interactions and for these kinematics is dominated by the real part of the spin-orbit optical potential. The distorted-wave impulse approximation provides good agreement with data for the 1p_{3/2} shell. The data for the continuum suggest that both the 1s_{1/2} shell and underlying l > 1 configurations contribute.Comment: 5 pages LaTeX, 2 postscript figures, accepted by Physical Reveiw Letter

    Quantum Effects in the Mechanical Properties of Suspended Nanomechanical Systems

    Full text link
    We explore the quantum aspects of an elastic bar supported at both ends and subject to compression. If strain rather than stress is held fixed, the system remains stable beyond the buckling instability, supporting two potential minima. The classical equilibrium transverse displacement is analogous to a Ginsburg-Landau order parameter, with strain playing the role of temperature. We calculate the quantum fluctuations about the classical value as a function of strain. Excitation energies and quantum fluctuation amplitudes are compared for silicon beams and carbon nanotubes.Comment: RevTeX4. 5 pages, 3 eps figures. Submitted to Physical Review Letter

    Adult Non-Cystic Fibrosis Bronchiectasis Is Characterised by Airway Luminal Th17 Pathway Activation

    Get PDF
    Copyright © 2015 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.BACKGROUND: Non-cystic fibrosis (CF) bronchiectasis is characterised by chronic airway infection and neutrophilic inflammation, which we hypothesised would be associated with Th17 pathway activation. METHODS: Th17 pathway cytokines were quantified in bronchoalveolar lavage fluid (BALF), and gene expression of IL-17A, IL-1β, IL-8 and IL-23 determined from endobronchial biopsies (EBx) in 41 stable bronchiectasis subjects and 20 healthy controls. Relationships between IL-17A levels and infection status, important clinical measures and subsequent Pseudomonas aeruginosa infection were determined. RESULTS: BALF levels of all Th17 cytokines (median (IQR) pg/mL) were significantly higher in bronchiectasis than control subjects, including IL-17A (1.73 (1.19, 3.23) vs. 0.27 (0.24, 0.35), 95% CI 1.05 to 2.21, p<0.0001) and IL-23 (9.48 (4.79, 15.75) vs. 0.70 (0.43, 1.79), 95% CI 4.68 to 11.21, p<0.0001). However, BALF IL-17A levels were not associated with clinical measures or airway microbiology, nor predictive of subsequent P. aeruginosa infection. Furthermore, gene expression of IL-17A in bronchiectasis EBx did not differ from control. In contrast, gene expression (relative to medians of controls) in bronchiectasis EBx was significantly higher than control for IL1β (4.12 (1.24, 8.05) vs 1 (0.13, 2.95), 95% CI 0.05 to 4.07, p = 0.04) and IL-8 (3.75 (1.64, 11.27) vs 1 (0.54, 3.89), 95% CI 0.32 to 4.87, p = 0.02) and BALF IL-8 and IL-1α levels showed significant relationships with clinical measures and airway microbiology. P. aeruginosa infection was associated with increased levels of IL-8 while Haemophilus influenzae was associated with increased IL-1α. CONCLUSIONS AND CLINICAL RELEVANCE: Established adult non-CF bronchiectasis is characterised by luminal Th17 pathway activation, however this pathway may be relatively less important than activation of non-antigen-specific innate neutrophilic immunity

    A Truncated Waveguide Phase Shifter

    Get PDF
    The design, fabrication and performance of a simple phase shifter based upon truncated circular and square waveguides is presented. An emphasis is placed upon validation of simple analytical formulae that describe the propagation properties of the structure. A test device is prototyped at approximately 40GHz; however, the concepts explored can be directly extended to millimeter and submillimeter applications

    A Measurement of the Interference Structure Function, R_LT, for the 12C(e,e'p) reaction in the Quasielastic Region

    Get PDF
    The coincidence cross-section and the interference structure function, R_LT, were measured for the 12C(e,e'p) 11B reaction at quasielastic kinematics and central momentum transfer of q=400 MeV/c. The measurement was at an opening angle of theta_pq=11 degrees, covering a range in missing energy of E_m = 0 to 65 MeV. The R_LT structure function is found to be consistent with zero for E_m > 50 MeV, confirming an earlier study which indicated that R_L vanishes in this region. The integrated strengths of the p- and s-shell are compared with a Distorted Wave Impulse Approximation calculation. The s-shell strength and shape are compared with a Hartree Fock-Random Phase Approximation calculation. The DWIA calculation overestimates the cross sections for p- and s-shell proton knockout as expected, but surprisingly agrees with the extracted R_LT value for both shells. The HF-RPA calculation describes the data more consistently, which may be due to the inclusion of 2-body currents in this calculation.Comment: 8 Pages LaTex, 5 postscript figures. Submitted to Phys. Rev.

    Measurements of S and P-A Using the 12-C(p,p'y) Reaction at 150 MeV

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Quasielastic 12C(e,e'p) Reaction at High Momentum Transfer

    Full text link
    We measured the 12C(e,e'p) cross section as a function of missing energy in parallel kinematics for (q,w) = (970 MeV/c, 330 MeV) and (990 MeV/c, 475 MeV). At w=475 MeV, at the maximum of the quasielastic peak, there is a large continuum (E_m > 50 MeV) cross section extending out to the deepest missing energy measured, amounting to almost 50% of the measured cross section. The ratio of data to DWIA calculation is 0.4 for both the p- and s-shells. At w=330 MeV, well below the maximum of the quasielastic peak, the continuum cross section is much smaller and the ratio of data to DWIA calculation is 0.85 for the p-shell and 1.0 for the s-shell. We infer that one or more mechanisms that increase with ω\omega transform some of the single-nucleon-knockout into multinucleon knockout, decreasing the valence knockout cross section and increasing the continuum cross section.Comment: 14 pages, 7 figures, Revtex (multicol, prc and aps styles), to appear in Phys Rev
    • …
    corecore