22 research outputs found

    The Interactive Dynamics of Nanocatalyst Structure and Microenvironment during Electrochemical CO2 Conversion.

    No full text
    In the pursuit of a decarbonized society, electrocatalytic CO2 conversion has drawn tremendous research interest in recent years as a promising route to recycling CO2 into more valuable chemicals. To achieve high catalytic activity and selectivity, nanocatalysts of diverse structures and compositions have been designed. However, the dynamic structural transformation of the nanocatalysts taking place under operating conditions makes it difficult to study active site configurations present during the CO2 reduction reaction (CO2RR). In addition, although recognized as consequential to the catalytic performance, the reaction microenvironment generated near the nanocatalyst surface during CO2RR and its impact are still an understudied research area. In this Perspective, we discuss current understandings and difficulties associated with investigating such dynamic aspects of both the surface reaction site and its surrounding reaction environment as a whole. We further highlight the interactive influence of the structural transformation and the microenvironment on the catalytic performance of nanocatalysts. We also present future research directions to control the structural evolution of nanocatalysts and tailor their reaction microenvironment to achieve an ideal catalyst for improved electrochemical CO2RR

    The presence and role of the intermediary CO reservoir in heterogeneous electroreduction of CO2

    No full text
    Despite the importance of the microenvironment in heterogeneous electrocatalysis, its role remains unclear due to a lack of suitable characterization techniques. Multi-step reactions like the electroconversion of CO2 to multicarbons (C2+) are especially relevant considering the potential creation of a unique microenvironment as part of the reaction pathway. To elucidate the significance of the microenvironment during CO2 reduction, we develop on-stream substitution of reactant isotope (OSRI), a new method which relies on the subsequent introduction of CO2 isotopes. Combining electrolytic experiments with a numerical model, this method reveals the presence of a reservoir of CO molecules concentrated near the catalyst surface that influences C2+ formation. Application of OSRI on a Cu nanoparticle (NP) ensemble and an electropolished Cu foil demonstrates that a CO monolayer covering the surface does not provide the amount of CO intermediates necessary to facilitate C-C coupling. Specifically, the C2+ turnover increases only after reaching a density of ~100 CO molecules per surface Cu atom. The Cu NP ensemble satisfies this criterion at an overpotential 100 mV lower than the foil, making it a better candidate for efficient C2+ formation. Furthermore, given the same reservoir size, the ensemble’s intrinsically higher C-C coupling ability is highlighted by the 4-fold higher C2+ turnover it achieves at a more positive potential. The OSRI method provides an improved understanding of how the presence of CO intermediates in the microenvironment impacts C2+ formation during the electroreduction of CO2 on Cu surfaces

    The presence and role of the intermediary CO reservoir in heterogeneous electroreduction of CO2.

    No full text
    SignificanceThe electroconversion of CO2 to value-added products is a promising path to sustainable fuels and chemicals. However, the microenvironment that is created during CO2 electroreduction near the surface of heterogeneous Cu electrocatalysts remains unknown. Its understanding can lead to the development of ways to improve activity and selectivity toward multicarbon products. This work introduces a method called on-stream substitution of reactant isotope that provides quantitative information of the CO intermediate species present on Cu surfaces during electrolysis. An intermediary CO reservoir that contains more CO molecules than typically expected in a surface adsorbed configuration was identified. Its size was shown to be a factor closely associated with the formation of multicarbon products

    Mitochondria Alkylation and Cellular Trafficking Mapped with a Lipophilic BODIPY–Acrolein Fluorogenic Probe

    No full text
    Protein and DNA alkylation by endogenously produced electrophiles is associated with the pathogenesis of neurodegenerative diseases, to epigenetic alterations and to cell signaling and redox regulation. With the goal of visualizing, in real-time, the spatiotemporal response of the cell milieu to electrophiles, we have designed a fluorogenic BODIPY–acrolein probe, <b>AcroB</b>, that undergoes a >350-fold fluorescence intensity enhancement concomitant with protein adduct formation. <b>AcroB</b> enables a direct quantification of single post-translational modifications occurring on cellular proteins via recording fluorescence bursts in live-cell imaging studies. In combination with super-resolution imaging, protein alkylation events may be registered and individually counted, yielding a map of protein–electrophile reactions within the cell lipid milieu. Alkylation is predominantly observed within mitochondria, a source, yet not a sink, of <b>AcroB</b> adducts, illustrating that a mitochondrial constitutive excretion mechanism ensures rapid disposal of compromised proteins. Sorting within the Golgi apparatus and trafficking along microtubules and through the cell endo- and exocytic pathways can be next visualized via live-cell imaging. Our results offer a direct visualization of cellular response to a noncanonical acrolein warhead. We envision <b>AcroB</b> will enable new approaches for diagnosis of pathologies associated with defective cellular trafficking. <b>AcroB</b> may help elucidate key aspects of mitochondria electrophile adduct excretion and cell endocytic and exocytic pathways. Conceptually, <b>AcroB</b> provides a new paradigm on fluorescence microscopy studies where chemical perturbation is achieved and simultaneously reported by the probe

    Abiotic sugar synthesis from CO2 electrolysis

    No full text
    CO2 valorization is aimed at converting waste CO2 to value-added products. While steady progress has been achieved through diverse catalytic strategies, including CO2 electrosynthesis, CO2 thermocatalysis, and biological CO2 fixation, each of these approaches have distinct limitations. Inorganic catalysts only enable synthesis beyond C2 and C3 products with poor selectivity and with a high energy requirement. Meanwhile, although biological organisms can selectively produce complex products from CO2, their slow autotrophic metabolism limits their industrial feasibility. Here, we present an abiotic approach leveraging electrochemical and thermochemical catalysis to complete the conversion of CO2 to life-sustaining carbohydrate sugars akin to photosynthesis. CO2 was electrochemically converted to glycolaldehyde and formaldehyde using copper nanoparticles and boron-doped diamond cathodes, respectively. CO2-derived glycolaldehyde then served as the key autocatalyst for the formose reaction, where glycolaldehyde and formaldehyde combined in the presence of an alkaline earth metal catalyst to form a variety of C4 - C8 sugars, including glucose. In turn, these sugars were used as a feedstock for fast-growing and genetically modifiable Escherichia coli. Altogether, we have assembled a platform that pushes the boundaries of product complexity achievable from CO2 conversion while demonstrating CO2 integration into life-sustaining sugars
    corecore