33 research outputs found

    Pharmacogenomic Research in South Africa: Lessons Learned and Future Opportunities in the Rainbow Nation

    Get PDF
    South Africa, like many other developing countries, stands to benefit from novel diagnostics and drugs developed by pharmacogenomics guidance due to high prevalence of disease burden in the region. This includes both communicable (e.g., HIV/AIDS and tuberculosis) and non-communicable (e.g., diabetes and cardiovascular) diseases. For example, although only 0.7% of the world’s population lives in South Africa, the country carries 17% of the global HIV/AIDS burden and 5% of the global tuberculosis burden. Nobel Peace Prize Laureate Archbishop Emeritus Desmond Tutu has coined the term Rainbow Nation, referring to a land of wealth in its many diverse peoples and cultures. It is now timely and necessary to reflect on how best to approach new genomics biotechnologies in a manner that carefully considers the public health needs and extant disease burden in the region. The aim of this paper is to document and review the advances in pharmacogenomics in South Africa and importantly, to evaluate the direction that future research should take. Previous research has shown that the populations in South Africa exhibit unique allele frequencies and novel genetic variation in pharmacogenetically relevant genes, often differing from other African and global populations. The high level of genetic diversity, low linkage disequilibrium and the presence of rare variants in these populations question the feasibility of the use of current commercially available genotyping platforms, and may partially account for genotype-phenotype discordance observed in past studies. However, the employment of high throughput technologies for genomic research, within the context of large clinical trials, combined with interdisciplinary studies and appropriate regulatory guidelines, should aid in acceleration of pharmacogenomic discoveries in high priority therapeutic areas in South Africa. Finally, we suggest that projects such as the H3Africa Initiative, the SAHGP and PGENI should play an integral role in the coordination of genomic research in South Africa, but also other African countries, by providing infrastructure and capital to local researchers, as well as providing aid in addressing the computational and statistical bottlenecks encountered at present

    H3Africa and the African life sciences ecosystem: building sustainable innovation

    Get PDF
    Interest in genomics research in African populations is experiencing exponential growth. This enthusiasm stems in part from the recognition that the genomic diversity of African populations is a window of opportunity for innovations in postgenomics medicine, ecology, and evolutionary biology. The recently launched H3Africa initiative, for example, captures the energy and momentum of this interest. This interdisciplinary socio-technical analysis highlights the challenges that have beset previous genomics research activities in Africa, and looking ahead, suggests constructive ways H3Africa and similar large scale science efforts could usefully chart a new era of genomics and life sciences research in Africa that is locally productive and globally competitive. As independent African scholars and social scientists, we propose that any serious global omics science effort, including H3Africa, aiming to build genomics research capacity and capability in Africa, needs to fund the establishment of biobanks and the genomic analyses platforms within Africa. Equally they need to prioritize community engagement and bioinformatics capability an d the training of African scientists on these platform s. Historically , the financial, technological, and skills imbalance between Africa and developed countries has created exploitative frameworks of collaboration where African researchers have become merely facilitators of Western funded and conceived research agendas involving offshore expatriation of samples. Not surprisingly, very little funding was allocated to infrastructure and human capital development in the past. Moving forward, capacity building should materialize throughout the entire knowledge co-production trajectory: idea generation (e.g., brainstorming workshops for innovative hypotheses development by African scientists), data generation (e.g., genome sequencing), an d high-through put data analysis an d contextualization . Additionally, building skills for political science scholarship that questions the unchecked assumptions of the innovation performers be they funders, scientists, and social scientists, would enable collective innovation that is truly sustainable, ethical, and robust

    Chromosome 22q11 in a Xhosa schizophrenia population

    Full text link

    Identification of a novel functional deletion variant in the 5'-UTR of the DJ-1 gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DJ-1 forms part of the neuronal cellular defence mechanism against oxidative insults, due to its ability to undergo self-oxidation. Oxidative stress has been implicated in the pathogenesis of central nervous system damage in different neurodegenerative disorders including Alzheimer's disease and Parkinson's disease (PD). Various mutations in the <it>DJ-1 </it>(<it>PARK7</it>) gene have been shown to cause the autosomal recessive form of PD. In the present study South African PD patients were screened for mutations in <it>DJ-1 </it>and we aimed to investigate the functional significance of a novel 16 bp deletion variant identified in one patient.</p> <p>Methods</p> <p>The possible effect of the deletion on promoter activity was investigated using a Dual-Luciferase Reporter assay. The <it>DJ-1 </it>5'-UTR region containing the sequence flanking the 16 bp deletion was cloned into a pGL4.10-Basic luciferase-reporter vector and transfected into HEK293 and BE(2)-M17 neuroblastoma cells. Promoter activity under hydrogen peroxide-induced oxidative stress conditions was also investigated. Computational (<it>in silico</it>) <it>cis</it>-regulatory analysis of <it>DJ-1 </it>promoter sequence was performed using the transcription factor-binding site database, TRANSFAC via the PATCH™ and rVISTA platforms.</p> <p>Results</p> <p>A novel 16 bp deletion variant (g.-6_+10del) was identified in <it>DJ-1 </it>which spans the transcription start site and is situated 93 bp 3' from a Sp1 site. The deletion caused a reduction in luciferase activity of approximately 47% in HEK293 cells and 60% in BE(2)-M17 cells compared to the wild-type (<it>P </it>< 0.0001), indicating the importance of the 16 bp sequence in transcription regulation. The activity of both constructs was up-regulated during oxidative stress. Bioinformatic analysis revealed putative binding sites for three transcription factors AhR, ARNT, HIF-1 within the 16 bp sequence. The frequency of the g.-6_+10del variant was determined to be 0.7% in South African PD patients (2 heterozygotes in 148 individuals).</p> <p>Conclusion</p> <p>This is the first report of a functional <it>DJ-1 </it>promoter variant, which has the potential to influence transcript stability or translation efficiency. Further work is necessary to determine the extent to which the g.-6_+10del variant affects the normal function of the <it>DJ-1 </it>promoter and whether this variant confers a risk for PD.</p

    Die isolasie en karakterisering van mens genomiese DNA fragmente

    No full text
    Proefskrif (M.Sc.(Sitogenetika)) - Universiteit van Stellenbosch, 1984.Full text to be digitised and attached to bibliographic record

    ReviewGenetic research, behavioural science, and child and adolescent mental health in South Africa: an important new agenda

    No full text
    Background: Since the announcement of the results of the international research project to unravel the human genome in the early 1990s there has been a burgeoning of research into the genetic basis of psychopathology and development. South African behavioural researchers, however, have reasons to be cautious about the benefits of genetic research in the light of the historical link between eugenic interests and practices which were attractive to ideologies such as Nazism and apartheid.Methods: In this article we discuss the burgeoning interface internationally between behavioural and genetic research. We describe a number of areas of recent research that are particularly relevant to child and adolescent mental health in South Africa (antisocial behaviour, disorganised attachment and depression) that are beginning to illuminate the interactions between the behavioural and genetic domains.Discussion: We argue that we need to engage more actively with what the sciences of the brain and behaviour have to offer, and in so doing make a case for the urgent inclusion of genetic research in mental health research in South Africa. Journal of Child and Adolescent Mental Health 2008, 20(2): 73–8
    corecore