5 research outputs found

    Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs

    Get PDF
    Phosphoinositide 3-kinase δ (PI3Kδ) has a key role in lymphocytes, and inhibitors that target this PI3K have been approved for treatment of B cell malignancies1-3. Although studies in mouse models of solid tumours have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumour immunity4,5, its effect on solid tumours in humans remains unclear. Here we assessed the effects of the PI3Kδi AMG319 in human patients with head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomized phase II trial (EudraCT no. 2014-004388-20). PI3Kδ inhibition decreased the number of tumour-infiltrating regulatory T (Treg) cells and enhanced the cytotoxic potential of tumour-infiltrating T cells. At the tested doses of AMG319, immune-related adverse events (irAEs) required treatment to be discontinued in 12 out of 21 of patients treated with AMG319, suggestive of systemic effects on Treg cells. Accordingly, in mouse models, PI3Kδi decreased the number of Treg cells systemically and caused colitis. Single-cell RNA-sequencing analysis revealed a PI3Kδi-driven loss of tissue-resident colonic ST2 Treg cells, accompanied by expansion of pathogenic T helper 17 (TH17) and type 17 CD8+ T (TC17) cells, which probably contributed to toxicity; this points towards a specific mode of action for the emergence of irAEs. A modified treatment regimen with intermittent dosing of PI3Kδi in mouse models led to a significant decrease in tumour growth without inducing pathogenic T cells in colonic tissue, indicating that alternative dosing regimens might limit toxicity

    Immunomodulatory effects of PI3Kδ inhibition in solid tumors – evaluation in a randomized phase II trial

    No full text
    Phosphoinositide 3-kinase δ (PI3Kδ) plays a key role in lymphocytes and inhibitors targeting this PI3K have been approved for hematological malignancies. While studies in hematological and solid tumor models in mice have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumor immunity, the impact of PI3Kδi on solid tumors in humans remains unclear. Here, we assessed the effects of the PI3Kδi AMG319 in patients with resectable head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomised phase-II trial. We find that PI3Kδ inhibition decreases tumor-infiltrating immunosuppressive TREG cells and causes heightened cytotoxic potential of tumor-infiltrating CD8+ and CD4+ T cells. Loss of intratumoral TREG cells and an increase in the frequency of activated TREG cells in the blood post-treatment are indicative of systemic effects on TREG tissue retention and maintenance. At the tested AMG319 doses, immune-related adverse events caused treatment discontinuation in 12/21 of AMG319-treated patients, further suggestive of systemic effects on TREG cells. Consistent with this notion, in a murine syngeneic tumor model, PI3Kδi decreased TREG cells in both tumor and non-malignant tissues and affected TREG subtype composition, maintenance and functionality. Our data demonstrate the cancer-immunotherapy potential of PI3Kδ inhibition in humans, but its modulation will need to be carefully balanced to harness its anti-tumor capacity while minimizing immune related toxicity

    Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs.

    Get PDF
    Phosphoinositide 3-kinase δ (PI3Kδ) has a key role in lymphocytes, and inhibitors that target this PI3K have been approved for treatment of B cell malignancies1-3. Although studies in mouse models of solid tumours have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumour immunity4,5, its effect on solid tumours in humans remains unclear. Here we assessed the effects of the PI3Kδi AMG319 in human patients with head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomized phase II trial (EudraCT no. 2014-004388-20). PI3Kδ inhibition decreased the number of tumour-infiltrating regulatory T (Treg) cells and enhanced the cytotoxic potential of tumour-infiltrating T cells. At the tested doses of AMG319, immune-related adverse events (irAEs) required treatment to be discontinued in 12 out of 21 of patients treated with AMG319, suggestive of systemic effects on Treg cells. Accordingly, in mouse models, PI3Kδi decreased the number of Treg cells systemically and caused colitis. Single-cell RNA-sequencing analysis revealed a PI3Kδi-driven loss of tissue-resident colonic ST2 Treg cells, accompanied by expansion of pathogenic T helper 17 (TH17) and type 17 CD8+ T (TC17) cells, which probably contributed to toxicity; this points towards a specific mode of action for the emergence of irAEs. A modified treatment regimen with intermittent dosing of PI3Kδi in mouse models led to a significant decrease in tumour growth without inducing pathogenic T cells in colonic tissue, indicating that alternative dosing regimens might limit toxicity
    corecore