3,977 research outputs found

    Ancilla-based quantum simulation

    Full text link
    We consider simulating the BCS Hamiltonian, a model of low temperature superconductivity, on a quantum computer. In particular we consider conducting the simulation on the qubus quantum computer, which uses a continuous variable ancilla to generate interactions between qubits. We demonstrate an O(N^3) improvement over previous work conducted on an NMR computer [PRL 89 057904 (2002) & PRL 97 050504 (2006)] for the nearest neighbour and completely general cases. We then go on to show methods to minimise the number of operations needed per time step using the qubus in three cases; a completely general case, a case of exponentially decaying interactions and the case of fixed range interactions. We make these results controlled on an ancilla qubit so that we can apply the phase estimation algorithm, and hence show that when N \geq 5, our qubus simulation requires significantly less operations that a similar simulation conducted on an NMR computer.Comment: 20 pages, 10 figures: V2 added section on phase estimation and performing controlled unitaries, V3 corrected minor typo

    Legal Counseling and Lawyers\u27 Fees: A Quadrilogue

    Get PDF
    Discusses the relationship between legal counseling and lawyers\u27 fees. Attitudes of lawyers toward legal counseling; Area of legal counseling related to human needs and human interactions; Usefulness of counseling time

    Legal Counseling and Lawyers\u27 Fees: A Quadrilogue

    Get PDF
    Discusses the relationship between legal counseling and lawyers\u27 fees. Attitudes of lawyers toward legal counseling; Area of legal counseling related to human needs and human interactions; Usefulness of counseling time

    Health reform requires policy capacity

    Get PDF
    Health reform requires policy capacity Pierre-Gerlier Forest 1 * , Jean-Louis Denis 2 , Lawrence D. Brown 3 , David Helms 4 Abstract Among the many reasons that may limit the adoption of promising reform ideas, policy capacity is the least recognized. The concept itself is not widely understood. Although policy capacity is concerned with the gathering of information and the formulation of options for public action in the initial phases of policy consultation and development, it also touches on all stages of the policy process, from the strategic identification of a problem to the actual development of the policy, its formal adoption, its implementation, and even further, its evaluation and continuation or modification. Expertise in the form of policy advice is already widely available in and to public administrations, to well-established professional organizations like medical societies and, of course, to large private-sector organizations with commercial or financial interests in the health sector. We need more health actors to join the fray and move from their traditional position of advocacy to a fuller commitment to the development of policy capacity, with all that it entails in terms of leadership and social responsibilit

    The Quantum States and the Statistical Entropy of the Charged Black Hole

    Full text link
    We quantize the Reissner-Nordstr\"om black hole using an adaptation of Kucha\v{r}'s canonical decomposition of the Kruskal extension of the Schwarzschild black hole. The Wheeler-DeWitt equation turns into a functional Schroedinger equation in Gaussian time by coupling the gravitational field to a reference fluid or dust. The physical phase space of the theory is spanned by the mass, MM, the charge, QQ, the physical radius, RR, the dust proper time, τ\tau, and their canonical momenta. The exact solutions of the functional Schroedinger equation imply that the difference in the areas of the outer and inner horizons is quantized in integer units. This agrees in spirit, but not precisely, with Bekenstein's proposal on the discrete horizon area spectrum of black holes. We also compute the entropy in the microcanonical ensemble and show that the entropy of the Reissner-Nordstr\"om black hole is proportional to this quantized difference in horizon areas.Comment: 31 pages, 3 figures, PHYZZX macros. Comments on the wave-functional in the interior and one reference added. To appear in Phys. Rev.

    Hamiltonian thermodynamics of the Reissner-Nordstr\"om-anti-de Sitter black hole

    Full text link
    We consider the Hamiltonian dynamics and thermodynamics of spherically symmetric Einstein-Maxwell spacetimes with a negative cosmological constant. We impose boundary conditions that enforce every classical solution to be an exterior region of a Reissner-Nordstr\"om-anti-de Sitter black hole with a nondegenerate Killing horizon, with the spacelike hypersurfaces extending from the horizon bifurcation two-sphere to the asymptotically anti-de Sitter infinity. The constraints are simplified by a canonical transformation, which generalizes that given by Kucha\v{r} in the spherically symmetric vacuum Einstein theory, and the theory is reduced to its true dynamical degrees of freedom. After quantization, the grand partition function of a thermodynamical grand canonical ensemble is obtained by analytically continuing the Lorentzian time evolution operator to imaginary time and taking the trace. A~similar analysis under slightly modified boundary conditions leads to the partition function of a thermodynamical canonical ensemble. The thermodynamics in each ensemble is analyzed, and the conditions that the (grand) partition function be dominated by a classical Euclidean black hole solution are found. When these conditions are satisfied, we recover in particular the Bekenstein-Hawking entropy. The limit of a vanishing cosmological constant is briefly discussed. (This paper is dedicated to Karel Kucha\v{r} on the occasion of his sixtieth birthday.)Comment: 34 pages, REVTeX v3.0. (Minor corrections and presentational revisions; added references.

    Black Hole Thermodynamics and Two-Dimensional Dilaton Gravity Theory

    Get PDF
    We relate various black hole solutions in the near-horizon region to black hole solutions in two-dimensional dilaton gravity theories in order to argue that thermodynamics of black holes in D>=4 can be effectively described by thermodynamics of black holes in two-dimensional dilaton gravity theories. We show that the Bekenstein-Hawking entropies of single-charged dilatonic black holes and dilatonic p-branes with an arbitrary dilaton coupling parameter in arbitrary spacetime dimensions are exactly reproduced by the Bekenstein-Hawking entropy of the two-dimensional black hole in the associated two-dimensional dilaton gravity model. We comment that thermodynamics of non-extreme stringy four-dimensional black hole with four charges and five-dimensional black hole with three charges may be effectively described by thermodynamics of the black hole solutions with constant dilaton field in two-dimensional dilaton gravity theories.Comment: 15 pages, LaTeX, added reference
    • …
    corecore