12,447 research outputs found
Redundancy relations and robust failure detection
All failure detection methods are based on the use of redundancy, that is on (possible dynamic) relations among the measured variables. Consequently the robustness of the failure detection process depends to a great degree on the reliability of the redundancy relations given the inevitable presence of model uncertainties. The problem of determining redundancy relations which are optimally robust in a sense which includes the major issues of importance in practical failure detection is addressed. A significant amount of intuition concerning the geometry of robust failure detection is provided
Electrical Detection of Spin Accumulation at a Ferromagnet-Semiconductor Interface
We show that the accumulation of spin-polarized electrons at a forward-biased
Schottky tunnel barrier between Fe and n-GaAs can be detected electrically. The
spin accumulation leads to an additional voltage drop across the barrier that
is suppressed by a small transverse magnetic field, which depolarizes the spins
in the semiconductor. The dependence of the electrical accumulation signal on
magnetic field, bias current, and temperature is in good agreement with the
predictions of a drift-diffusion model for spin-polarized transport.Comment: Submitted to Phys. Rev. Let
Periodic and Localized Solutions of the Long Wave-Short Wave Resonance Interaction Equation
In this paper, we investigate the (2+1) dimensional long wave-short wave
resonance interaction (LSRI) equation and show that it possess the Painlev\'e
property. We then solve the LSRI equation using Painlev\'e truncation approach
through which we are able to construct solution in terms of three arbitrary
functions. Utilizing the arbitrary functions present in the solution, we have
generated a wide class of elliptic function periodic wave solutions and
exponentially localized solutions such as dromions, multidromions, instantons,
multi-instantons and bounded solitary wave solutions.Comment: 13 pages, 6 figure
Spin injection from the Heusler alloy Co_2MnGe into Al_0.1Ga_0.9As/GaAs heterostructures
Electrical spin injection from the Heusler alloy Co_2MnGe into a p-i-n
Al_0.1Ga_0.9As/GaAs light emitting diode is demonstrated. A maximum
steady-state spin polarization of approximately 13% at 2 K is measured in two
types of heterostructures. The injected spin polarization at 2 K is calculated
to be 27% based on a calibration of the spin detector using Hanle effect
measurements. Although the dependence on electrical bias conditions is
qualitatively similar to Fe-based spin injection devices of the same design,
the spin polarization injected from Co_2MnGe decays more rapidly with
increasing temperature.Comment: 8 pages, 4 figure
EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds
2005-2006 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
Spin injection from perpendicular magnetized ferromagnetic -MnGa into (Al,Ga)As heterostructures
Electrical spin injection from ferromagnetic -MnGa into an (Al,Ga)As
p-i-n light emitting diode (LED) is demonstrated. The -MnGa layers show
strong perpendicular magnetocrystalline anisotropy, enabling detection of spin
injection at remanence without an applied magnetic field. The bias and
temperature dependence of the spin injection are found to be qualitatively
similar to Fe-based spin LED devices. A Hanle effect is observed and
demonstrates complete depolarization of spins in the semiconductor in a
transverse magnetic field.Comment: 4 pages, 3 figure
Coupled KdV equations derived from atmospherical dynamics
Some types of coupled Korteweg de-Vries (KdV) equations are derived from an
atmospheric dynamical system. In the derivation procedure, an unreasonable
-average trick (which is usually adopted in literature) is removed. The
derived models are classified via Painlev\'e test. Three types of
-function solutions and multiple soliton solutions of the models are
explicitly given by means of the exact solutions of the usual KdV equation. It
is also interesting that for a non-Painlev\'e integrable coupled KdV system
there may be multiple soliton solutions.Comment: 19 pages, 2 figure
Approximate perturbed direct homotopy reduction method: infinite series reductions to two perturbed mKdV equations
An approximate perturbed direct homotopy reduction method is proposed and
applied to two perturbed modified Korteweg-de Vries (mKdV) equations with
fourth order dispersion and second order dissipation. The similarity reduction
equations are derived to arbitrary orders. The method is valid not only for
single soliton solution but also for the Painlev\'e II waves and periodic waves
expressed by Jacobi elliptic functions for both fourth order dispersion and
second order dissipation. The method is valid also for strong perturbations.Comment: 8 pages, 1 figur
Phase Separation of Bismuth Ferrite into Magnetite under Voltage Stressing
Micro-Raman studies show that under ~700 kV/cm of d.c. voltage stressing for
a few seconds, thin-film bismuth ferrite BiFeO3 phase separates into magnetite
Fe3O4. No evidence is found spectroscopically of hemite alpha-Fe2O3, maghemite
gamma-Fe2O3, or of Bi2O3. This relates to the controversy regarding the
magnitude of magnetization in BiFeO3.Comment: 9 pages and 2 figure
- …
