371 research outputs found

    ATP synthase ecto-α-subunit: a novel therapeutic target for breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment failure for breast cancer is frequently due to lymph node metastasis and invasion to neighboring organs. The aim of the present study was to investigate invasion- and metastasis-related genes in breast cancer cells <it>in vitro </it>and <it>in vivo</it>. Identification of new targets will facilitate the developmental pace of new techniques in screening and early diagnosis. Improved abilities to predict progression and metastasis, therapeutic response and toxicity will help to increase survival of breast cancer patients.</p> <p>Methods</p> <p>Differential protein expression in two breast cancer cell lines, one with high and the other with low metastatic potential, was analyzed using two-dimensional liquid phase chromatographic fractionation (Proteome Lab PF 2D system) followed by matrix-assisted laser desorption/time-of-flight mass spectrometry (MALDI-TOF/MS).</p> <p>Results</p> <p>Up regulation of α-subunit of ATP synthase was identified in high metastatic cells compared with low metastatic cells. Immunohistochemical analysis of 168 human breast cancer specimens on tissue microarrays revealed a high frequency of ATP synthase α-subunit expression in breast cancer (94.6%) compared to normal (21.2%) and atypical hyperplasia (23%) breast tissues. Levels of ATP synthase expression levels strongly correlated with large tumor size, poor tumor differentiation and advanced tumor stages (<it>P </it>< 0.05). ATP synthase α-subunit over-expression was detected on the surface of a highly invasive breast cancer cell line. An antibody against the ATP synthase α-subunit inhibited proliferation, migration and invasion in these breast cancer cells but not that of a non-tumor derived breast cell line.</p> <p>Conclusions</p> <p>Over-expression of ATP synthase α-subunit may be involved in the progression and metastasis of breast cancer, perhaps representing a potential biomarker for diagnosis, prognosis and a therapeutic target for breast cancer. This finding of this study will help us to better understand the molecular mechanism of tumor metastasis and to improve the screening, diagnosis, as well as prognosis and/or prediction of responses to therapy for breast cancer.</p

    Manipulating spatial structure of high-order quantum coherence with entangled photons

    Full text link
    High-order quantum coherence reveals the statistical correlation of quantum particles. Manipulation of quantum coherence of light in temporal domain enables to produce single-photon source, which has become one of the most important quantum resources. High-order quantum coherence in spatial domain plays a crucial role in a variety of applications, such as quantum imaging, holography and microscopy. However, the active control of high-order spatial quantum coherence remains a challenging task. Here we predict theoretically and demonstrate experimentally the first active manipulation of high-order spatial quantum coherence by mapping the entanglement of spatially structured photons. Our results not only enable to inject new strength into current applications, but also provide new possibilities towards more wide applications of high-order quantum coherence.Comment: 11 pages, 5 figure

    Long-term sky islands generate highly divergent lineages of a narrowly distributed stream salamander (Pachyhynobius shangchengensis) in mid-latitude mountains of East Asia

    Get PDF
    Background Climate oscillation may have a profound effect on species distributions, gene flow patterns and population demography. In response to environmental change, those species restricted to montane habitats experienced expansions and contractions along elevation gradients, which can drive differentiation among sky islands. Results The Shangcheng stout salamander (Pachyhynobius shangchengensis) is a cool stream amphibian restricted to high-elevation areas in the Dabie Mountains, East China. In the present study, we used mtDNA genes (Cyt b and ND2) of 193 individuals and 12 nuclear microsatellite loci genotyped on 370 individuals, representing 6 populations (JTX, KHJ, MW, TTZ, BYM and KJY) across the taxon’s distribution area, to investigate their genetic variation and evolutionary history of P. shangchengensis. Most populations showed unusually high levels of genetic diversity. Phylogenetic analyses revealed five monophyletic clades with divergence times ranging from 3.96 to 1.4 Mya. Accordingly, significant genetic differentiation was present between these populations. Bayesian skyline plot analyses provided that all populations underwent long-term population expansions since the last inter-glacial (0.13 Mya ~ 0.12 Mya). Msvar analyses found recent signals of population decline for two northern populations (JTX and KHJ) reflecting a strong bottleneck (approximately 15-fold decrease) during the mid-Holocene (about 6000 years ago). Ecological niche modelling has shown a discontinuity in suitable habitats for P. shangchengensis under different historical climatic conditions. Conclusions Our results suggest that the niche conservatism of P. shangchengensis and sky island effects may have led to long-term isolation between populations. In sky island refuges, the mid-latitude Dabie Mountains have provided a long-term stable environment for P. shangchengensis, which has led to the accumulation of genetic diversity and has promoted genetic divergence

    Pathogenesis of SARS-CoV-2 in Transgenic Mice Expressing Human Angiotensin-Converting Enzyme 2

    Get PDF
    COVID-19 has spread worldwide since 2019 and is now a severe threat to public health. We previously identified the causative agent as a novel SARS-related coronavirus (SARS-CoV-2) that uses human angiotensinconverting enzyme 2 (hACE2) as the entry receptor. Here, we successfully developed a SARS-CoV-2 hACE2 transgenic mouse (HFH4-hACE2 in C3B6 mice) infection model. The infected mice generated typical interstitial pneumonia and pathology that were similar to those of COVID-19 patients. Viral quantification revealed the lungs as the major site of infection, although viral RNA could also be found in the eye, heart, and brain in some mice. Virus identical to SARS-CoV-2 in full-genome sequences was isolated from the infected lung and brain tissues. Last, we showed that pre-exposure to SARS-CoV-2 could protect mice from severe pneumonia. Our results show that the hACE2 mouse would be a valuable tool for testing potential vaccines and therapeutics

    NGF and proNGF Regulate Functionally Distinct mRNAs in PC12 Cells: An Early Gene Expression Profiling

    Get PDF
    The biological activities of NGF and of its precursor proNGF are quite distinct, due to different receptor binding profiles, but little is known about how proNGF regulates gene expression. Whether proNGF is a purely pro-apoptotic molecule and/or simply a “less potent NGF” is still a matter of debate. We performed experiments to address this question, by verifying whether a proNGF specific transcriptional signature, distinct from that of NGF, could be identified. To this aim, we studied gene expression regulation by proNGF and NGF in PC12 cells incubated for 1 and 4 hours with recombinant NGF and proNGF, in its wild-type or in a furin-cleavage resistant form. mRNA expression profiles were analyzed by whole genome microarrays at early time points, in order to identify specific profiles of NGF and proNGF. Clear differences between the mRNA profiles modulated by the three neurotrophin forms were identified. NGF and proNGF modulate remarkably distinct mRNA expression patterns, with the gene expression profile regulated by NGF being significantly more complex than that by proNGF, both in terms of the total number of differentially expressed mRNAs and of the gene families involved. Moreover, while the total number of genes modulated by NGF increases dramatically with time, that by proNGFs is unchanged or reduced. We identified a subset of regulated genes that could be ascribed to a “pure proNGF” signalling, distinct from the “pure NGF” one. We also conclude that the composition of mixed NGF and proNGF samples, when the two proteins coexist, influences the profile of gene expression. Based on this comparison of the gene expression profiles regulated by NGF and its proNGF precursor, we conclude that the two proteins activate largely distinct transcriptional programs and that the ratio of NGF to proNGF in vivo can profoundly influence the pattern of regulated mRNAs
    corecore