448 research outputs found

    A Life in Passing: Jonathan Gray

    Get PDF

    Receptor-mediated signalling in plants: molecular patterns and programmes

    Get PDF
    A highly evolved surveillance system in plants is able to detect a broad range of signals originating from pathogens, damaged tissues, or altered developmental processes, initiating sophisticated molecular mechanisms that result in defence, wound healing, and development. Microbe-associated molecular pattern molecules (MAMPs), damage-associated molecular pattern molecules (DAMPs), virulence factors, secreted proteins, and processed peptides can be recognized directly or indirectly by this surveillance system. Nucleotide binding-leucine rich repeat proteins (NB-LRR) are intracellular receptors and have been targeted by breeders for decades to elicit resistance to crop pathogens in the field. Receptor-like kinases (RLKs) or receptor like proteins (RLPs) are membrane bound signalling molecules with an extracellular receptor domain. They provide an early warning system for the presence of potential pathogens and activate protective immune signalling in plants. In addition, they act as a signal amplifier in the case of tissue damage, establishing symbiotic relationships and effecting developmental processes. The identification of several important ligands for the RLK-type receptors provided an opportunity to understand how plants differentiate, how they distinguish beneficial and detrimental stimuli, and how they co-ordinate the role of various types of receptors under varying environmental conditions. The diverse roles of extra-and intracellular plant receptors are examined here and the recent findings on how they promote defence and development is reviewed

    An all-electrical torque differential magnetometer operating under ambient conditions

    Full text link
    An all-electrical torque differential magnetometry (also known as cantilever magnetometry) setup employing piezoelectric quartz tuning forks is demonstrated. The magnetometer can be operated under ambient conditions as well as low temperatures and pressures. It extends the allowed specimen mass range up to several 10 Ό\mug without any significant reduction in the sensitivity. Operation under ambient conditions and a simple all-electrical design of the magnetometer should allow for an easy integration with other experimental setups. The uniaxial magnetic anisotropy of a 25 Ό\mum diameter iron wire, measured under ambient conditions with a high signal to noise ratio, was found to be in good agreement with its literature value. Further applications of the technique are discussed.Comment: 9 two-column pages, 9 figure

    Predator decline leads to decreased stability in a coastal fish community

    Get PDF
    Fisheries exploitation has caused widespread declines in marine predators. Theory predicts that predator depletion will destabilise lower trophic levels, making natural communities more vulnerable to environmental perturbations. However, empirical evidence has been limited. Using a community matrix model, we empirically assessed trends in the stability of a multispecies coastal fish community over the course of predator depletion. Three indices of community stability (resistance, resilience and reactivity) revealed significantly decreasing stability concurrent with declining predator abundance. The trophically downgraded community exhibited weaker top-down control, leading to predator-release processes in lower trophic levels and increased susceptibility to perturbation. At the community level, our results suggest that high predator abundance acts as a stabilising force to the naturally stochastic and highly autocorrelated dynamics in low trophic species. These findings have important implications for the conservation and management of predators in marine ecosystems and provide empirical support for the theory of predatory control

    Accounting for local temperature effect substantially alters afforestation patterns

    Get PDF
    Human intervention in forested ecosystems is hoped to perform a fundamental shift within the next decade by reverting current forest loss—a major source of CO2 emissions—to net forest gain taking up carbon and thus aiding climate change mitigation. The demanded extensive establishment of forests will change the local surface energy fluxes, and with it the local climate, in addition to competing with food and fiber production for land and water. Scenario building models encompass this competition for resources but have turned a blind eye to the biogeophysical (BGP) local surface energy flux disturbance so far. We combine the benefit of CO2 sequestration of afforestation/reforestation (A/R) with the additional incentive or penalty of local BGP induced cooling or warming by translating the local BGP induced temperature change to a CO2 equivalent. We then include this new aspect in the land-use model Model for Agricultural Production and their Impact on the Environment (MAgPIE) via modifying the application of the price on greenhouse gases (GHGs). This enables us to use MAgPIE to produce A/R scenarios that are optimized for both their potential CO2 sequestration and the CO2 equivalent local BGP effect, as well as the socio-economic trade-offs of A/R. Here we show that optimal A/R patterns are substantially altered by taking the local BGP effects into account. Considering local cooling benefits of establishing forests triples (+203.4%) the viable global A/R area in 2100 from 116 to 351 Mha under the conditions of the shared socioeconomic pathway 2 (SSP2) scenario driven by the same GHG price. Three quarters (76.0%, +179 Mha) of the additionally forested area is established in tropical climates alone. Therefore, a further neglect of BGP effects in scenario building models undervalues the benefit of tropical forests while simultaneously running the risk of proposing counterproductive measures at high latitudes. However, the induced focus on tropical forestation intensifies the competition with food production where forests contribute most to mitigation. A/R related trade-offs need to be considered alongside their climate benefit to inhibit unintentional harm of mitigation efforts.AXISERANETFederal Ministry of Education and Research (BMBF)German Aerospace Center (DLR)European UnionPeer Reviewe

    microRNA 30A promotes autophagy in response to cancer therapy

    Get PDF
    microRNAs (miRNAs) are a class of small regulatory RNAs that regulate gene expression at the post-transcriptional level. miRNAs play important roles in the regulation of development, growth, and metastasis of cancer, and in determining the response of tumor cells to anticancer therapy. In recent years, they have also emerged as important regulators of autophagy, a lysosomal-mediated pathway that contributes to degradation of a cell's own components. Imatinib, a targeted competitive inhibitor of the BCR-ABL1 tyrosine kinase, has revolutionized the clinical treatment of chronic myelogenous leukemia (CML). We demonstrate that MIR30A-mediated autophagy enhances imatinib resistance against CML including primary stem and progenitor cells. MIR30A, but not MIR101, is a potent inhibitor of autophagy by selectively downregulating BECN1 and ATG5 expression in CML cells. MIR30A mimics, as well as knockdown of BECN1 and ATG5, increases intrinsic apoptotic pathways. In contrast, the antagomir-30A increases autophagy and inhibits intrinsic apoptotic pathways, confirming that autophagy serves to protect against apoptosis. Taken together, these data clarify some of the underlying molecular mechanisms of tyrosine kinase inhibitor-induced autophagy

    The Neural Correlates of Face-Voice-Integration in Social Anxiety Disorder

    Get PDF
    Faces and voices are very important sources of threat in social anxiety disorder (SAD), a common psychiatric disorder where core elements are fears of social exclusion and negative evaluation. Previous research in social anxiety evidenced increased cerebral responses to negative facial or vocal expressions and also generally increased hemodynamic responses to voices and faces. But it is unclear if also the cerebral process of face-voice-integration is altered in SAD. Applying functional magnetic resonance imaging, we investigated the correlates of the audiovisual integration of dynamic faces and voices in SAD as compared to healthy individuals. In the bilateral midsections of the superior temporal sulcus (STS) increased integration effects in SAD were observed driven by greater activation increases during audiovisual stimulation as compared to auditory stimulation. This effect was accompanied by increased functional connectivity with the visual association cortex and a more anterior position of the individual integration maxima along the STS in SAD. These findings demonstrate that the audiovisual integration of facial and vocal cues in SAD is not only systematically altered with regard to intensity and connectivity but also the individual location of the integration areas within the STS. These combined findings offer a novel perspective on the neuronal representation of social signal processing in individuals suffering from SAD

    Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet|platinum bilayers

    Get PDF
    We carried out a concerted effort to determine the absolute sign of the inverse spin Hall effect voltage generated by spin currents injected into a normal metal. We focus on yttrium iron garnet (YIG)|platinum bilayers at room temperature, generating spin currents by microwaves and temperature gradients. We find consistent results for different samples and measurement setups that agree with theory. We suggest a right-hand-rule to define a positive spin Hall angle corresponding to with the voltage expected for the simple case of scattering of free electrons from repulsive Coulomb charges.Comment: incorporated additions from the published versio

    Damage Associated Molecular Pattern Molecule-Induced microRNAs (DAMPmiRs) in Human Peripheral Blood Mononuclear Cells

    Get PDF
    Endogenous damage associated molecular pattern molecules (DAMPs) released from necrotic, damaged or stressed cells are associated with an inflammatory response. Whether the microRNA (miR) expression signature of this response is different from that of a pathogen associated molecular pattern (PAMP)-stimulated inflammatory response is unknown. We report here that miR-34c and miR-214 are significantly expressed in fresh human peripheral blood mononuclear cells (PBMCs) exposed to DAMP-containing freeze-thaw lysates, or to conditioned media from serum-starved and glucose-deprived cells (p<6×10−4 and p<3.7×10−3), respectively. Interestingly, only miR-34c expression was differentially expressed in PBMCs exposed to freeze-thaw lysates or conditioned media from wildtype High Mobility Group B1 (HMGB1+/+) mouse embryonic fibroblast (MEF) cells, when compared to cultures exposed to lysates or conditioned media from HMGB1−/− MEFs. miR-155 expression in these cultures was negligible, but was significantly expressed in PBMCs stimulated with Lipopolysaccahride (LPS) or most other Toll-like receptor (TLR) ligands, making it the prototypic “PAMPmiR”. Exposure to a damaged human colorectal carcinoma cell line lysate (HCT116) similarly resulted in increased miR-34c and miR-214 levels. When PBMCs were pre-transfected with anti-miR-34c and then exposed to lysate, expression levels of IKKÎł mRNA, a putative target of miR-34c, increased, while protein levels of IKKÎł in cultures transfected with a pre-miR-34c were abrogated. Levels of miR-34c expression (as well as pro-inflammatory cytokines, IL-1ÎČ and TNFα) decreased when PBMC cultures were briefly pre-incubated with the K+ channel (inflammasome) inhibitor, glybenclamide, suggesting that inflammasome activation is upstream of miR-34c expression in response to DAMPs. Our findings demonstrate that a specific microRNA expression signature is associated with the inflammatory response to damaged/injured cells and carries implications for many acute and chronic inflammatory disorders
    • 

    corecore