1,628 research outputs found

    On the nature of spatiotemporal light bullets in bulk Kerr media

    Get PDF
    We present a detailed experimental investigation, which uncovers the nature of light bullets generated from self-focusing in a bulk dielectric medium with Kerr nonlinearity in the anomalous group velocity dispersion regime. By high dynamic range measurements of three-dimensional intensity profiles, we demonstrate that the light bullets consist of a sharply localized high-intensity core, which carries the self-compressed pulse and contains approximately 25% of the total energy, and a ring-shaped spatiotemporal periphery. Sub-diffractive propagation along with dispersive broadening of the light bullets in free space after they exit the nonlinear medium indicate a strong space-time coupling within the bullet. This finding is confirmed by measurements of spatiotemporal energy density flux that exhibits the same features as stationary, polychromatic Bessel beam, thus highlighting the physical nature of the light bullets

    Establishing Multi-User MIMO Communications Automatically Using Retrodirective Arrays

    Get PDF
    Communications in the mmWave and THz bands will be a key technological pillar for next-generation wireless networks. However, the increase in frequency results in an increase in path loss, which must be compensated for by using large antenna arrays. This introduces challenging issues due to power consumption, signalling overhead for channel estimation, hardware complexity, and slow beamforming and beam alignment schemes, which are in contrast with the requirements of next-generation wireless networks. In this paper, we propose the adoption of a retro-directive antenna array (RAA) at the user equipment (UE) side, where the signal sent by the base station (BS) is reflected towards the source after being conjugated and phase-modulated according to the UE data. By making use of modified Power Methods for the computation of the eigenvectors of the resulting round-trip channel, it is shown that, in single and multi-user multiple-input multiple-output (MIMO) scenarios, ultra-low complexity UEs can establish parallel communication links automatically with the BS in a very short time. This is done in a blind way, also by tracking fast channel variations while communicating, without the need for ADC chains at the UE as well as without explicit channel estimation and time-consuming beamforming and beam alignment schemes

    Memory effect in melting behaviour, crystallization kinetics and morphology of poly(propylene terephthalate)

    Get PDF
    Crystallization kinetics and melting behaviour of poly(propylene terephthalate) (PPT) were investigated by means of differential scanning calorimetry and hot-stage optical microscopy. Isothermal crystallization kinetics was analysed according to the Avrami treatment. The effects of temperature and duration of melting on the overall rate of isothermal crystallization were studied: the rate was found to decrease with increasing melting temperature and melting time. This result was discussed on the basis of the gradual destruction of predetermined athermal nuclei. Values of the Avrami exponent close to 3 were obtained, regardless of the adopted thermal treatment and the crystallization temperature, Tc, in agreement with a crystallization process originating from predetermined nuclei and characterized by three-dimensional spherulitic growth. As a matter of fact, spacefilling spherulites were observed by optical microscopy at all Tc's, independent of the applied thermal treatments. For each of them, the rate of crystallization became lower as Tc increased, as usual at low undercooling where the crystallization process is controlled by nucleation. The observed multiple endotherms, which are commonly displayed by polyesters, were influenced by Tc and ascribed to melting and recrystallization processes. Linear and non-linear treatments were applied in order to estimate the equilibrium melting temperature for PPT, by using the corrected melting temperatures. The non-linear estimation yielded an about 33°C higher value with respect to the one obtained by means of the linear approach. Through the analysis of secondary nucleation theory, the classical II→III transition was found to occur at a temperature of 194°C. The average work of chain folding for nucleation was determined to be c. 5.2 kcal/mol. The heat of fusion was correlated to the specific heat increment for samples with different degree of crystallinity and the results were interpreted on the basis of the existence of an interphase, whose amount was found to depend on the thermal treatment the polymer was subjected to

    Poly(Alkylene 2,5-thiophenedicarboxylate) polyesters: A new class of bio-based high-performance polymers for sustainable packaging

    Get PDF
    In the present study, 100% bio-based polyesters of 2,5-thiophenedicarboxylic acid were synthesized via two-stage melt polycondensation using glycols containing 3 to 6 methylene groups. The so-prepared samples were characterised from the molecular point of view and processed into free-standing thin films. Afterward, both the purified powders and the films were subjected to structural and thermal characterisation. In the case of thin films, mechanical response and barrier properties to O2 and CO2 were also evaluated. From the results obtained, it emerged that the length of glycolic sub-units is an effective tool to modulate the chain mobility and, in turn, the kind and amount of ordered phases developed in the samples. In addition to the usual amorphous and 3D crystalline phases, in all the samples investigated it was possible to evidence a further phase characterised by a lower degree of order (mesophase) than the crystalline one, whose amount is strictly related to the glycol sub-unit length. The relative fraction of all these phases is responsible for the different mechanical and barrier performances. Last, but not least, a comparison between thiophene-based homopolymers and their furan-based homologues was carried out

    Fibroblasts to keratinocytes redox signaling: The possible role of ROS in psoriatic plaque formation

    Get PDF
    Although the role of reactive oxygen species-mediated (ROS-mediated) signalling in physiologic and pathologic skin conditions has been proven, no data exist on the skin cells ROS-mediated communication. Primary fibroblasts were obtained from lesional and non-lesional skin of psoriatic patients. ROS, superoxide anion, calcium and nitric oxide levels and lipoperoxidation markers and total antioxidant content were measured in fibroblasts. NADPH oxidase activity and NOX1, 2 and 4 expressions were assayed and NOX4 silencing was performed. Fibroblasts and healthy keratinocytes co-culture was performed. MAPK pathways activation was studied in fibroblasts and in co-cultured healthy keratinocytes. Increased intracellular calcium, •NO and ROS levels as well as an enhanced NADPH oxidase 4 (NOX4)–mediated extracellular ROS release was shown in lesional psoriatic vs. control fibroblasts. Upon co-culture with lesional fibroblasts, keratinocytes showed p38 and ERK MAPKs pathways activation, ROS, Ca2+ and •NO increase and cell cycle acceleration. Notably, NOX4 knockdown significantly reduced the observed effects of lesional fibroblasts on keratinocyte cell cycle progression. Co-culture with non-lesional psoriatic and control fibroblasts induced slight cell cycle acceleration, but notable intracellular ROS accumulation and ERK MAPK activation in keratinocytes. Collectively, our data demonstrate that NOX4 expressed in dermal fibroblasts is essential for the redox paracrine regulation of epidermal keratinocytes proliferation

    Electrospun Membranes of Poly(butylene succinate) and Poly(butylene/2-butyl,2-ethyl-propylene succinate)

    Get PDF
    Poly(butylene succinate) (PBS) and poly(butylene/2-butyl,2-ethyl-propylene succinate) (PBSBEPS) membranes are prepared by electrospinning technique. In recent years, interest in biodegradable aliphatic polyesters, including PBS and its copolymers, is increasing as they have potential applications in various sectors such as mulching films, food packaging, tissue engineering, and drug delivery. In this work, the synthesized polymers are dissolved in different solvents, namely acetone, chloroform (CHCl3), methanol, dichloromethane (DCM), and dimethylformamide in order to obtain the best solvent system. These solutions are then electrospun at room temperature to produce micron-sized fibers. The variables examined in determining the optimal solution and electrospinning conditions are the solvent system used, the concentration of PBS and PBS-based random copolymer, applied voltage, flow rate, humidity, and the distance between the needle tip and the collector, all of which have a meaningful effect on the fiber morphology. Among the various solvents used, the DCM and the less toxic CHCl3 result in fewer bead defects among fibers. Besides, an increase in PBS and PBS-based random copolymer concentration determines the reduction of bead defects, which from 12 to 14 wt% results in bead-free uniform fibers, when suitable processing parameters are set. Promising results, which can pave the way for the production of membranes loaded with appropriate anticancer molecules for targeted biomedical applications, are obtained

    Tight Regulation of Mechanotransducer Proteins Distinguishes the Response of Adult Multipotent Mesenchymal Cells on PBCE-Derivative Polymer Films with Different Hydrophilicity and Stiffness

    Get PDF
    : Mechanotransduction is a molecular process by which cells translate physical stimuli exerted by the external environment into biochemical pathways to orchestrate the cellular shape and function. Even with the advancements in the field, the molecular events leading to the signal cascade are still unclear. The current biotechnology of tissue engineering offers the opportunity to study in vitro the effect of the physical stimuli exerted by biomaterial on stem cells and the mechanotransduction pathway involved in the process. Here, we cultured multipotent human mesenchymal/stromal cells (hMSCs) isolated from bone marrow (hBM-MSCs) and adipose tissue (hASCs) on films of poly(butylene 1,4-cyclohexane dicarboxylate) (PBCE) and a PBCE-based copolymer containing 50 mol% of butylene diglycolate co-units (BDG50), to intentionally tune the surface hydrophilicity and the stiffness (PBCE = 560 Mpa; BDG50 = 94 MPa). We demonstrated the activated distinctive mechanotransduction pathways, resulting in the acquisition of an elongated shape in hBM-MSCs on the BDG50 film and in maintaining the canonical morphology on the PBCE film. Notably, hASCs acquired a new, elongated morphology on both the PBCE and BDG50 films. We found that these events were mainly due to the differences in the expression of Cofilin1, Vimentin, Filamin A, and Talin, which established highly sensitive machinery by which, rather than hASCs, hBM-MSCs distinguished PBCE from BDG50 films

    Characterization of composite edible films based on pectin/alginate/whey protein concentrate

    Get PDF
    Edible films and coatings gained renewed interest in the food packaging sector with polysaccharide and protein blending being explored as a promising strategy to improve properties of edible films. The present work studies composite edible films in different proportions of pectin (P), alginate (A) and whey Protein concentrate (WP) formulated with a simplex centroid mixture design and evaluated for physico-chemical characteristics to understand the effects of individual components on the final film performance. The studied matrices exhibited good film forming capacity, except for whey protein at a certain concentration, with thickness, elastic and optical properties correlated to the initial solution viscosity. A whey protein component in general lowered the viscosity of the initial solutions compared to that of alginate or pectin solutions. Subsequently, a whey protein component lowered the mechanical strength, as well as the affinity for water, as evidenced from an increasing contact angle. The effect of pectin was reflected in the yellowness index, whereas alginate and whey protein affected the opacity of film. Whey protein favored higher opacity, lower gas barrier values and dense structures, resulting from the polysaccharide-protein aggregates. All films displayed however good thermal stability, with degradation onset temperatures higher than 170 \ub0C
    corecore