2,773 research outputs found
Assessing the adequacy of the bare optical potential in near-barrier fusion calculation
We critically examine the differences among the different bare nuclear
interactions used in near-barrier heavy ion fusion analysis and
Coupled-Channels calculations, and discuss the possibility of extracting the
barrier parameters of the bare potential from above-barrier data. We show that
the choice of the bare potential may be critical for the analysis of the fusion
cross sections. We show also that the barrier parameters taken from above
barrier data may be very wrong.Comment: 8 pages, 3 tables, 8 figures. Submitted to Physical Review
Erythrocytes in multiple sclerosis: forgotten contributors to the pathophysiology?
Multiple sclerosis (MS) is an autoimmune disease characterised by lymphocytic infiltration of the central nervous system and subsequent destruction of myelin and axons. On the background of a genetic predisposition to autoimmunity, environmental triggers are assumed to initiate the disease. The majority of MS research has focused on the pathological involvement of lymphocytes and other immune cells, yet a paucity of attention has been given to erythrocytes, which may play an important role in MS pathology. The following review briefly summarises how erythrocytes may contribute to MS pathology through impaired antioxidant capacity and altered haemorheological features. The effect of disease-modifying therapies on erythrocytes is also reviewed. It may be important to further investigate erythrocytes in MS, as this could broaden the understanding of the pathological mechanisms of the disease, as well as potentially lead to the discovery of novel and innovative targets for future therapies
Analogue Gravity and ultrashort laser pulse filamentation
Ultrashort laser pulse filaments in dispersive nonlinear Kerr media induce a
moving refractive index perturbation which modifies the space-time geometry as
seen by co-propagating light rays. We study the analogue geometry induced by
the filament and show that one of the most evident features of filamentation,
namely conical emission, may be precisely reconstructed from the geodesics. We
highlight the existence of favorable conditions for the study of analogue black
hole kinematics and Hawking type radiation.Comment: 4 pages, revised versio
Sending femtosecond pulses in circles: highly non-paraxial accelerating beams
We use caustic beam shaping on 100 fs pulses to experimentally generate
non-paraxial accelerating beams along a 60 degree circular arc, moving
laterally by 14 \mum over a 28 \mum propagation length. This is the highest
degree of transverse acceleration reported to our knowledge. Using diffraction
integral theory and numerical beam propagation simulations, we show that
circular acceleration trajectories represent a unique class of non-paraxial
diffraction-free beam profile which also preserves the femtosecond temporal
structure in the vicinity of the caustic
Energy Dependence of Breakup Cross Sections of Halo Nucleus 8B and Effective Interactions
We study the energy dependence of the cross sections for nucleon removal of
8B projectiles. It is shown that the Glauber model calculations with
nucleon-nucleon t-matrix reproduce well the energy dependence of the breakup
cross sections of 8B. A DWBA model for the breakup cross section is also
proposed and results are compared with those of the Glauber model. We show that
to obtain an agreement between the DWBA calculations, the Glauber formalism,
and the experimental data, it is necessary to modify the energy behavior of the
effective interaction. In particular, the breakup potential has a quite
different energy dependence than the strong absorption potential.Comment: 13 pages, 4 figure
Erythrocyte microRNAs show biomarker potential and implicate multiple sclerosis susceptibility genes
Bio-based aliphatic/aromatic poly(trimethylene furanoate/sebacate) random copolymers:Correlation between mechanical, gas barrier performances and compostability and copolymer composition
Highly promising fully biobased random copolyesters, poly(trimethylene 2,5-furandicarboxylate-co-trimethylene sebacate) (PTFcoPTSeb), were synthesized by using bio derived 1,3-propanediol, dimethyl ester of 2,5- furandicarboxylic acid, and sebacic acid, through eco-friendly polycondensation in the melt. Copolymers with high molecular weight containing 5, 15, 25 mol % of PTSeb were obtained, and their chemical structure confirmed by 1H NMR and FTIR spectroscopy. The thermal, tensile and gas barrier properties and composability were studied in relation to the copolymer supramolecular structure. As expected, introduction of PTSeb co-units results in lowering of glass transition temperature of copolymers and improves their flexibility. Besides, all copolymers showed outstanding gas barrier properties to O2 and CO2, with copolymer containing 15 mol % of PTSeb showing exceptional gas barrier properties, better than those of PTF and comparable to those of EVOH, currently used in multilayer packaging films. The same copolymer exhibited temperature induced shape memory behaviour. It was found that low amounts (15-25 mol %) of PTSeb in copolymer significantly modifies PTF thermal, mechanical and barrier properties and renders the final material compostable. Copolyesters containing 15 and 25 mol % of PTSeb can compete in some applications with commercially available compostable Ecoflex® polymer, but with markedly improved barrier properties.</p
- …