66 research outputs found

    First-order multi-k phase transitions and magnetoelectric effects in multiferroic Co3TeO6

    Full text link
    A theoretical description of the sequence of magnetic phases in Co3TeO6 is presented. The strongly first-order character of the transition to the commensurate multiferroic ground state, induced by coupled order parameters corresponding to different wavevectors, is related to a large magnetoelastic effect with an exchange energy critically sensitive to the interatomic spacing. The monoclinic magnetic symmetry C2' of the multiferroic phase permits spontaneous polarization and magnetization as well as the linear magnetoelectric effect. The existence of weakly ferromagnetic domains is verified experimentally by second harmonic generation measurements

    Local control of improper ferroelectric domains in YMnO3_3

    Full text link
    Improper ferroelectrics are described by two order parameters: a primary one, driving a transition to long-range distortive, magnetic or otherwise non-electric order, and the electric polarization, which is induced by the primary order parameter as a secondary, complementary effect. Using low-temperature scanning probe microscopy, we show that improper ferroelectric domains in YMnO3_3 can be locally switched by electric field poling. However, subsequent temperature changes restore the as-grown domain structure as determined by the primary lattice distortion. The backswitching is explained by uncompensated bound charges occuring at the newly written domain walls due to the lack of mobile screening charges at low temperature. Thus, the polarization of improper ferroelectrics is in many ways subject to the same electrostatics as in their proper counterparts, yet complemented by additional functionalities arising from the primary order parameter. Tailoring the complex interplay between primary order parameter, polarization, and electrostatics is therefore likely to result in novel functionalities specific to improper ferroelectrics

    Pressure control of nonferroelastic ferroelectric domains in ErMnO3

    Get PDF
    Mechanical pressure controls the structural, electric, and magnetic order in solid-state systems, allowing tailoring of their physical properties. A well-established example is ferroelastic ferroelectrics, where the coupling between pressure and the primary symmetry-breaking order parameter enables hysteretic switching of the strain state and ferroelectric domain engineering. Here, we study the pressure-driven response in a nonferroelastic ferroelectric, ErMnO3, where the classical stress–strain coupling is absent and the domain formation is governed by creation–annihilation processes of topological defects. By annealing ErMnO3 polycrystals under variable pressures in the MPa regime, we transform nonferroelastic vortex-like domains into stripe-like domains. The width of the stripe-like domains is determined by the applied pressure as we confirm by three-dimensional phase field simulations, showing that pressure leads to oriented layer-like periodic domains. Our work demonstrates the possibility to utilize mechanical pressure for domain engineering in nonferroelastic ferroelectrics, providing a lever to control their dielectric and piezoelectric responses

    Industrial mining heritage and the legacy of environmental pollution in the Derbyshire Derwent catchment: quantifying contamination at a regional scale and developing integrated strategies for management of the wider historic environment

    Get PDF
    The Derwent Valley Mills World Heritage Site (DVMWHS) exemplifies and records the 18th century birth of the factory or mill technology, and for the industrial spinning of cotton. The site is therefore a key global heritage asset. The Derbyshire Derwent catchment also contains another significant cultural asset with a long history – that of mining and, in particular, lead (Pb) mining. In this paper research on mining- and non-mining related Pb contamination of the Derwent catchment is reviewed and used to identify the risks it poses to the DVMWHS. The upper Derwent soils, though not impacted by mining, have high sediment-borne Pb concentrations, and the Pb is sourced from local conurbations (principally Manchester) and carried to the upper Derwent on the wind. River sediments in the middle and lower parts of the Derwent catchment are contaminated with Pb mined mainly between the 18th and 19th centuries and before, possibly as far back to the Bronze Age. The potential for large-scale, acidity-related chemical remobilization of this Pb is low in the Derwent catchment due to the largely alkaline nature of the underlying soils, but the potential for oxidation-reduction-related, and physical (flood-related), remobilization, is higher. Management guidelines for mining heritage assets and the DVMWHS are developed from the reviewed information, with the view that these will provide a framework for future work in, and management of, the DVMWHS that will be applicable to other World Heritage Sites affected by ongoing and past metal-mining. Focused collaborative work between archaeologists, geochemists, geomorphologists and mineralogistsis vital if the risks to the DVMWHS and other similarly-affected World Heritage Sites are to be quantified and, if necessary, mitigated

    Collectively Induced Quantum-Confined Stark Effect in Monolayers of Molecules Consisting of Polar Repeating Units

    Get PDF

    A short history of multiferroics

    No full text
    The realization that materials with coexisting magnetic and ferroelectric order open up efficient ways to control magnetism by electric fields unites scientists from different communities in the effort to explore the phenomenon of multiferroics. Following a tremendous development, the field has now gained some maturity. In this article, we give a succinct review of the history of this exciting class of materials and its evolution from “ferroelectromagnets” to “multiferroics” and beyond

    A short history of multiferroics

    No full text
    The realization that materials with coexisting magnetic and ferroelectric order open up efficient ways to control magnetism by electric fields unites scientists from different communities in the effort to explore the phenomenon of multiferroics. Following a tremendous development, the field has now gained some maturity. In this article, we give a succinct review of the history of this exciting class of materials and its evolution from “ferroelectromagnets” to “multiferroics” and beyond

    Manipulation of charged domain walls in geometric improper ferroelectric thin films: A phase-field study

    No full text
    Using phase-field simulations, we show how interfaces acting on the geometric-improper ferroelectric polarization of hexagonal manganite and ferrite thin films can be used to control the formation of charged domain walls. We modify the Landau expansion of the free energy valid in bulk to emulate interface effects known from previous cross-sectional experiments, and we verify our model by comparing our results with images obtained in these experiments. We then show how the interface affects the orientation of ferroelectric domain walls in the fully three-dimensional case. Furthermore, we demonstrate that interface effects combined with an external electric field enable us to specifically choose the dominant domain-wall type (head-to-head, tail-to-tail, or neutral). We also find that an electric field can stabilize a novel domain-wall type which only emerges in the improper ferroelectric order but not in the primary structural distortion. Since the domain walls have a conductivity that is different from the interior of the domains, the influence of the interfaces of a thin film on the type and distribution of the walls gives us the possibility to control the transport properties of a material by appropriate thin-film engineering.ISSN:2475-995
    corecore