7 research outputs found
On the theory of convolution equations of the third kind
AbstractThe autoconvolution equation of the third kind with coefficient of general power type is dealt with by the method of weighted norms developed for equations with coefficients of linear and integer power type in recent joint work of the author with L. Berg, J. Janno, and B. Hofmann. For this equation two existence theorems and a uniqueness theorem are proved. Further, as an auxiliary equation a linear singular integral equation of Abel is treated anew and the existence of solutions to a related class of linear Volterra equations of the third kind is derived
New results on the degree of ill-posedness for integration operators with weights
We extend our results on the degree of ill-posedness for linear integration opera-
tors A with weights mapping in the Hilbert space L^2(0,1), which were published in
the journal 'Inverse Problems' in 2005 ([5]). Now we can prove that the degree one
also holds for a family of exponential weight functions. In this context, we empha-
size that for integration operators with outer weights the use of the operator AA^*
is more appropriate for the analysis of eigenvalue problems and the corresponding
asymptotics of singular values than the former use of A^*A