631 research outputs found
Induction in myeloid leukemic cells of genes that are expressed in different normal tissues
Using DNA microarray and cluster analysis of expressed genes in a cloned line
(M1-t-p53) of myeloid leukemic cells, we have analyzed the expression of genes
that are preferentially expressed in different normal tissues. Clustering of
547 highly expressed genes in these leukemic cells showed 38 genes
preferentially expressed in normal hematopoietic tissues and 122 other genes
preferentially expressed in different normal non-hematopoietic tissues
including neuronal tissues, muscle, liver and testis. We have also analyzed the
genes whose expression in the leukemic cells changed after activation of
wild-type p53 and treatment with the cytokine interleukin 6 (IL-6) or the
calcium mobilizer thapsigargin (TG). Out of 620 such genes in the leukemic
cells that were differentially expressed in normal tissues, clustering showed
80 genes that were preferentially expressed in hematopoietic tissues and 132
genes in different normal non-hematopietic tissues that also included neuronal
tissues, muscle, liver and testis. Activation of p53 and treatment with IL-6 or
TG induced different changes in the genes preferentially expressed in these
normal tissues. These myeloid leukemic cells thus express genes that are
expressed in normal non-hematopoietic tissues, and various treatments can
reprogram these cells to induce other such non-hematopoietic genes. The results
indicate that these leukemic cells share with normal hematopoietic stem cells
the plasticity of differentiation to different cell types. It is suggested that
this reprogramming to induce in malignant cells genes that are expressed in
different normal tissues may be of clinical value in therapy
Human cancers over express genes that are specific to a variety of normal human tissues
We have analyzed gene expression data from 3 different kinds of samples:
normal human tissues, human cancer cell lines and leukemic cells from lymphoid
and myeloid leukemia pediatric patients. We have searched for genes that are
over expressed in human cancer and also show specific patterns of
tissue-dependent expression in normal tissues. Using the expression data of the
normal tissues we identified 4346 genes with a high variability of expression,
and clustered these genes according to their relative expression level. Of 91
stable clusters obtained, 24 clusters included genes preferentially expressed
either only in hematopoietic tissues or in hematopoietic and 1-2 other tissues;
28 clusters included genes preferentially expressed in various
non-hematopoietic tissues such as neuronal, testis, liver, kidney, muscle,
lung, pancreas and placenta. Analysis of the expression levels of these 2
groups of genes in the human cancer cell lines and leukemias, identified genes
that were highly expressed in cancer cells but not in their normal
counterparts, and were thus over expressed in the cancers. The different cancer
cell lines and leukemias varied in the number and identity of these over
expressed genes. The results indicate that many genes that are over expressed
in human cancer cells are specific to a variety of normal tissues, including
normal tissues other than those from which the cancer originated. It is
suggested that this general property of cancer cells plays a major role in
determining the behavior of the cancers, including their metastatic potential.Comment: To appear in PNA
A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions
The sheer amounts of biological data that are generated in recent years have
driven the development of network analysis tools to facilitate the
interpretation and representation of these data. A fundamental challenge in
this domain is the reconstruction of a protein-protein subnetwork that
underlies a process of interest from a genome-wide screen of associated genes.
Despite intense work in this area, current algorithmic approaches are largely
limited to analyzing a single screen and are, thus, unable to account for
information on condition-specific genes, or reveal the dynamics (over time or
condition) of the process in question. Here we propose a novel formulation for
network reconstruction from multiple-condition data and devise an efficient
integer program solution for it. We apply our algorithm to analyze the response
to influenza infection in humans over time as well as to analyze a pair of ER
export related screens in humans. By comparing to an extant, single-condition
tool we demonstrate the power of our new approach in integrating data from
multiple conditions in a compact and coherent manner, capturing the dynamics of
the underlying processes.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
The bottleneck may be the solution, not the problem
As a highly consequential biological trait, a memory \u201cbottleneck\u201d cannot escape selection pressures. It must therefore co-evolve with other cognitive mechanisms rather than act as an independent constraint. Recent theory and an implemented model of language acquisition suggest that a limit on working memory may evolve to help learning. Furthermore, it need not hamper the use of language for communication
Cycle-centrality in complex networks
Networks are versatile representations of the interactions between entities
in complex systems. Cycles on such networks represent feedback processes which
play a central role in system dynamics. In this work, we introduce a measure of
the importance of any individual cycle, as the fraction of the total
information flow of the network passing through the cycle. This measure is
computationally cheap, numerically well-conditioned, induces a centrality
measure on arbitrary subgraphs and reduces to the eigenvector centrality on
vertices. We demonstrate that this measure accurately reflects the impact of
events on strategic ensembles of economic sectors, notably in the US economy.
As a second example, we show that in the protein-interaction network of the
plant Arabidopsis thaliana, a model based on cycle-centrality better accounts
for pathogen activity than the state-of-art one. This translates into
pathogen-targeted-proteins being concentrated in a small number of triads with
high cycle-centrality. Algorithms for computing the centrality of cycles and
subgraphs are available for download
The landscape of molecular chaperones across human tissues reveals a layered architecture of core and variable chaperones
The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements. We demonstrate via a proteomic analysis that the muscle-specific signature is functional and conserved. Core chaperones are significantly more abundant across tissues and more important for cell survival than variable chaperones. Together with variable chaperones, they form tissue-specific functional networks. Analysis of human organ development and aging brain transcriptomes reveals that these functional networks are established in development and decline with age. In this work, we expand the known functional organization of de novo versus stress-inducible eukaryotic chaperones into a layered core-variable architecture in multi-cellular organisms
The p53 tumour suppressor inhibits glucocorticoidâinduced proliferation of erythroid progenitors
Hypoxia encountered at high altitude, blood loss and erythroleukemia instigate stress erythropoiesis, which involves glucocorticoid-induced proliferation of erythroid progenitors (ebls). The tumour suppressor p53 stimulates hematopoietic cell maturation and antagonizes glucocorticoid receptor (GR) activity in hypoxia, suggesting that it may inhibit stress erythropoiesis. We report that mouse fetal liver ebls that lack p53 proliferate better than wild-type cells in the presence of the GR agonist dexamethasone. An important mediator of GR-induced ebl self-renewal, the c-myb gene, is induced to higher levels in p53(â/â) ebls by dexamethasone. The stress response to anemia is faster in the spleens of p53(â/â) mice, as shown by the higher levels of colony forming units erythroids and the increase in the CD34/c-kit double positive population. Our results show that p53 antagonizes GR-mediated ebl expansion and demonstrate for the first time that p53âGR cross-talk is important in a physiological process in vivo: stress erythropoiesis
Bridging topological and functional information in protein interaction networks by short loops profiling
Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H018409/1 to AP, ACCC and FF, and BB/J016284/1 to NSBT) and by the Leukaemia & Lymphoma Research (to NSBT and FF). SSC is funded by a Leukaemia & Lymphoma Research Gordon Piller PhD Studentship
KEYNOTE-022 part 3: A randomized, double-blind, phase 2 study of pembrolizumab, dabrafenib, and trametinib in BRAF-mutant melanoma
Background In the KEYNOTE-022 study, pembrolizumab with dabrafenib and trametinib (triplet) improved progression-free survival (PFS) versus placebo with dabrafenib and trametinib (doublet) without reaching statistical significance. Mature results on PFS, duration of response (DOR), and overall survival (OS) are reported. Methods The double-blind, phase 2 part of KEYNOTE-022 enrolled patients with previously untreated BRAF V600E/K-mutated advanced melanoma from 22 sites in seven countries. Patients were randomly assigned 1:1 to intravenous pembrolizumab (200 mg every 3 weeks) or placebo plus dabrafenib (150 mg orally two times per day) and trametinib (2 mg orally one time a day). Primary endpoint was PFS. Secondary endpoints were objective response rate, DOR, and OS. Efficacy was assessed in the intention-to-treat population, and safety was assessed in all patients who received at least one dose of study drug. This analysis was not specified in the protocol. Results Between November 30, 2015 and April 24, 2017, 120 patients were randomly assigned to triplet (n=60) or doublet (n=60) therapy. With 36.6 months of follow-up, median PFS was 16.9 months (95% CI 11.3 to 27.9) with triplet and 10.7 months (95% CI 7.2 to 16.8) with doublet (HR 0.53; 95% CI 0.34 to 0.83). With triplet and doublet, respectively, PFS at 24 months was 41.0% (95% CI 27.4% to 54.2%) and 16.3% (95% CI 8.1% to 27.1%); median DOR was 25.1 months (95% CI 14.1 to not reached) and 12.1 months (95% CI 6.0 to 15.7), respectively. Median OS was not reached with triplet and was 26.3 months with doublet (HR 0.64; 95% CI 0.38 to 1.06). With triplet and doublet, respectively, OS at 24 months was 63.0% (95% CI 49.4% to 73.9%) and 51.7% (95% CI 38.4% to 63.4%). Grade 3-5 treatment-related adverse events (TRAEs) occurred in 35 patients (58%, including one death) receiving triplet and 15 patients (25%) receiving doublet. Conclusion In BRAF V600E/K-mutant advanced melanoma, pembrolizumab plus dabrafenib and trametinib substantially improved PFS, DOR, and OS with a higher incidence of TRAEs. Interpretation of these results is limited by the post hoc nature of the analysis
- âŠ