405 research outputs found

    Influence of the salinity adjustment methods, salts and brine, on the toxicity of wastewater samples to mussels embryos

    Get PDF
    One of the main problems of the Whole Effluent Toxicity is related to the use of bioindicator species representative of the target environment. Most wastewater discharges are of fresh water, so their salinity has to be adjusted when they are discharged to transitional and marine coastal waters, in order to perform toxicity bioassays with reliable organisms. At the moment, there is no optimum technique to allow sample salinity to be adjusted and no specific information regarding salinity adjustment when bivalves are being considered for toxicity test performance. This paper provides information on the potential use of different methods to adjust the salinity of hotel/domestic wastewater samples with different brands of natural and synthetic Dry Salts (DS) and HyperSaline Brine (HSB) for use in the embryo larval development bioassay with the mussel Mytilus galloprovincialis. HyperSaline Brine derived from reconstructed artificial seawater proved to be more viable for wastewater salinity adjustment than DS

    Branch water uptake and redistribution in two conifers at the alpine treeline

    Get PDF
    During winter, conifers at the alpine treeline suffer dramatic losses of hydraulic conductivity, which are successfully recovered during late winter. Previous studies indicated branch water uptake to support hydraulic recovery. We analyzed water absorption and redistribution in Picea abies and Larix decidua growing at the treeline by in situ exposure of branches to δ2H-labelled water. Both species suffered high winter embolism rates (> 40–60% loss of conductivity) and recovered in late winter (< 20%). Isotopic analysis showed water to be absorbed over branches and redistributed within the crown during late winter. Labelled water was redistributed over 425 ± 5 cm within the axes system and shifted to the trunk, lower and higher branches (tree height 330 ± 40 cm). This demonstrated relevant branch water uptake and re-distribution in treeline conifers. The extent of water absorption and re-distribution was species-specific, with L. decidua showing higher rates. In natura, melting snow might be the prime source for absorbed and redistributed water, enabling embolism repair and restoration of water reservoirs prior to the vegetation period. Pronounced water uptake in the deciduous L. decidua indicated bark to participate in the process of water absorption

    Antimicrobial effects of chemically functionalized and/or photo-heated nanoparticles

    Get PDF
    Antibiotic resistance refers to when microorganisms survive and grow in the presence of specific antibiotics, a phenomenon mainly related to the indiscriminate widespread use and abuse of antibiotics. In this framework, thanks to the design and fabrication of original functional nanomaterials, nanotechnology offers a powerful weapon against several diseases such as cancer and pathogenic illness. Smart nanomaterials, such as metallic nanoparticles and semiconductor nanocrystals, enable the realization of novel drug-free medical therapies for fighting against antibiotic-resistant bacteria. In the light of the latest developments, we highlight the outstanding capabilities of several nanotechnology-inspired approaches to kill antibiotic-resistant bacteria. Chemically functionalized silver and titanium dioxide nanoparticles have been employed for their intrinsic toxicity, which enables them to exhibit an antimicrobial activity while, in a different approach, photo-thermal properties of metallic nanoparticles have been theoretically studied and experimentally tested against several temperature sensitive (mesophilic) bacteria. We also show that it is possible to combine a highly localized targeting with a plasmonic-based heating therapy by properly functionalizing nanoparticle surfaces with covalently linked antibodies. As a perspective, the utilization of properly engineered and chemically functionalized nanomaterials opens a new roads for realizing antibiotic free treatments against pathogens and related diseases

    Insights from in\ua0vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Acer pseudoplatanus and Fagus sylvatica seedlings

    Get PDF
    The seedling stage is the most susceptible one during a tree\u2032s life. Water relations may be crucial for seedlings due to their small roots, limited water buffers and the effects of drought on water transport. Despite obvious relevance, studies on seedling xylem hydraulics are scarce as respective methodical approaches are limited. Micro\u2010CT scans of intact Acer pseudoplatanus and Fagus sylvatica seedlings dehydrated to different water potentials (\u3a8) allowed the simultaneous observation of gas\u2010filled versus water\u2010filled conduits and the calculation of percentage loss of conductivity (PLC) in stems, roots and leaves (petioles or main veins). Additionally, anatomical analyses were performed and stem PLC measured with hydraulic techniques. In A. pseudoplatanus, petioles showed a higher \u3a8 at 50% PLC (\u3a850 121.13MPa) than stems ( 122.51 MPa) and roots ( 121.78 MPa). The main leaf veins of F. sylvatica had similar \u3a850 values ( 122.26 MPa) to stems ( 122.74 MPa) and roots ( 122.75 MPa). In both species, no difference between root and stems was observed. Hydraulic measurements on stems closely matched the micro\u2010CT based PLC calculations. Micro\u2010CT analyses indicated a species\u2010specific hydraulic architecture. Vulnerability segmentation, enabling a disconnection of the hydraulic pathway upon drought, was observed in A. pseudoplatanus but not in the especially shade\u2010tolerant F. sylvatica. Hydraulic patterns could partly be related to xylem anatomical traits

    Modelling the freezing and thawing behaviour of saturated soils

    Get PDF
    This thesis presents an investigation of the thermo / hydro / mechanical behaviour of saturated soils with cryogenic suction effects. The flow relationships accommodate a number of mechanisms: i) heat transfer by conduction, convection, and latent heat transfer and ii) moisture transfer in the liquid phase due to pressure head, elevation head, and thermal gradients. The mechanical behaviour of the soil is modelled by an elasto-plastic work hardening modified Cam- Clay constitutive model. A numerical solution for the theoretical formulation is presented. Standard finite element methods are used for spatial discretisation and finite difference methods are used for temporal discretisation. Verification of the model is achieved by means of programme of tests to check the following cryogenic components i) coupled thermo-hydraulic response, ii) deformation behaviour of the fully coupled thermo-hydro-mechanical model, iii) transient coupled liquid flow and deformation behaviour, and iv) latent heat of fusion. Validation focused on the impact of the cryogenic related processes included within the proposed theoretical formulation. In particular the development of ice lenses and the movement of moisture under cryogenic suction were investigated. The performance of the proposed model with respect to a number of variables was subsequently explored in order to determine their effect on the magnitude and growth of ice lenses in a freezing soil. The model was then applied to a large scale freezing experiment, namely a fully coupled thermo / hydro / mechanical simulation. The simulated results show a good correlation with the experimental results by predicting the patterns and trends of experimentally observed behaviour and the cryogenic processes that occur during the freezing and thawing of frost susceptible soils. It was therefore concluded that the proposed model is capable of providing a good representation of the fully coupled THM behaviour of saturated soils with cryogenic effects.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A randomised trial of subcutaneous intermittent interleukin-2 without antiretroviral therapy in HIV-infected patients: the UK-Vanguard Study

    Get PDF
    Objective: The objective of the trial was to evaluate in a pilot setting the safety and efficacy of interleukin-2 (IL-2) therapy when used without concomitant antiretroviral therapy as a treatment for HIV infection. Design and Setting: This was a multicentre randomised three-arm trial conducted between September 1998 and March 2001 at three clinical centres in the United Kingdom. Participants: Participants were 36 antiretroviral treatment naive HIV-1-infected patients with baseline CD4 T lymphocyte counts of at least 350 cells/mm(3). Interventions: Participants were randomly assigned to receive IL-2 at 15 million international units (MIU) per day ( 12 participants) or 9 MIU/day ( 12 participants) or no treatment ( 12 participants). IL-2 was administered by twice-daily subcutaneous injections for five consecutive days every 8 wk. Outcome Measures: Primary outcome was the change from baseline CD4 T lymphocyte count at 24 wk. Safety and plasma HIV RNA levels were also monitored every 4 wk through 24 wk. The two IL-2 dose groups were combined for the primary analysis. Results: Area under curve (AUC) for change in the mean CD4 T lymphocyte count through 24 wk was 129 cells/mm(3) for those assigned IL-2 ( both dose groups combined) and 13 cells/mm(3) for control participants (95% CI for difference, 51.3 - 181.2 cells/mm(3); p = 0.0009). Compared to the control group, significant increases in CD4 cell count were observed for both IL-2 dose groups: 104.2/mm(3) ( p = 0.008) and 128.4 cells/mm(3) ( p = 0.002) for the 4.5 and 7.5 MIU dose groups, respectively. There were no significant differences between the IL-2 (0.13 log(10) copies/ ml) and control (0.09 log(10) copies/ml) groups for AUC of change in plasma HIV RNA over the 24-wk period of follow- up ( 95% CI for difference, - 0.17 to 0.26; p = 0.70). Grade 4 and dose-limiting side effects were in keeping with those previously reported for IL-2 therapy. Conclusions: In participants with HIV infection and baseline CD4 T lymphocyte counts of at least 350 cells/mm(3), intermittent subcutaneous IL-2 without concomitant antiretroviral therapy was well tolerated and produced significant increases in CD4 T lymphocyte counts and did not adversely affect plasma HIV RNA levels
    • …
    corecore