85 research outputs found

    Effects of woody plant encroachment by eastern redcedar on mosquito communities in Oklahoma

    Get PDF
    Woody plant encroachment into grasslands is occurring worldwide, affecting ecosystems in ways that likely influence mosquito-borne disease transmission. In the U.S. Great Plains, encroachment by eastern redcedar (Juniperus virginiana) (ERC) may be expanding conducive habitat for mosquitoes and their hosts, but few studies have evaluated associations between ERC encroachment and West Nile virus (WNV). To test the hypotheses that mosquito abundance and WNV-infected mosquitoes increase with increasing ERC cover, we collected mosquitoes in 32 sites in Oklahoma reflecting various ERC encroachment stages. We found support for our first hypothesis, as mean abundance of Aedes albopictus increased significantly with ERC cover. However, Psorophora columbiae and Anopheles quadrimaculatus abundance decreased with increasing ERC. There was no significant association with ERC for other mosquito species. We could not test our second hypothesis due to low WNV prevalence, but the only detected WNV-infected pool of mosquitoes (Cx. tarsalis) was collected in ERC. Our results suggest ERC encroachment increases abundance of at least one medically important mosquito species, but further research is needed to clarify how encroachment affects ecology of the entire WNV disease system through changes to vector and host communities, vector-host interactions, and thus disease transmission and prevalence. Understanding relationships between woody plant encroachment and the nidus of infection for mosquito-borne diseases will be crucial for targeting public health efforts, including land management activities that limit and/or eradicate woody plant encroachment, particularly in areas with high levels of disease risk.Natural Resource Ecology and ManagementEntomology and Plant Patholog

    Limited rigor in studies of raptor mortality and mitigation at wind power facilities

    Get PDF
    Wind power is an expanding source of renewable energy. However, there are ecological challenges related to wind energy generation, including collisions of wildlife with turbines. Lack of rigor, and variation in study design, together limit efforts to understand the broad-scale effects of wind power infrastructure on wildlife populations. It is not clear, however, whether these types of limitations apply to groups of birds such as raptors that are particularly vulnerable to negative effects of wind energy. We reviewed 672 peer-reviewed publications, unpublished reports, and citations from 321 wind facilities in 12 countries to evaluate methods used to monitor and mitigate for wind facility impacts on raptors. Most reports that included raptor monitoring (86 %, n = 461) only conducted post-construction monitoring for raptor fatalities, while few (12 %; n = 65) estimated preconstruction raptor use. Only 27 % of facilities (n = 62) provided estimates of fatalities or raptor use across multiple construction phases, and the percentage of facilities with data available from multiple construction periods has not changed over time. A formal experimental study design was incorporated into surveys at only 29 % of facilities. Finally, mitigation practices to reduce impacts on raptors were only reported at 23 % of facilities. Our results suggest that rigorous data collection on wind energy impacts to raptors is rare, and that mitigation of detrimental effects is seldom reported. Expanding the use of rigorous research approaches and increasing data availability would improve understanding of the regional and global effects of wind energy on raptor populations

    Rickettsia parkeri and Candidatus Rickettsia andeanae in Amblyomma maculatum group ticks

    Get PDF
    We determined prevalence of Rickettsia spp. in 172 ticks of the Amblyomma maculatum group collected from 16 urban sites in Oklahoma City, Oklahoma, USA, during 2017 and 2018. Most ticks (59.3%) were collected from 1 site; 4 (2.3%) were infected with Rickettsia parkeri and 118 (68.6%) with Candidatus Rickettsia andeanae.Peer reviewedEntomology and Plant PathologyNatural Resource Ecology and Managemen

    Tick infestation of birds across a gradient of urbanization intensity in the United States Great Plains

    Get PDF
    Migratory birds play an important role in large-scale movements of ticks and tick-borne pathogens, yet little is known about tick infestation of resident birds (e.g., non-migratory species and migratory species during the breeding season), especially in urban ecosystems. We captured birds during the breeding season in parks and greenspaces in Oklahoma City, Oklahoma, USA, to evaluate overall tick infestation patterns and to determine if urbanization influences infestation prevalence (the proportion of birds parasitized) and intensity (the number of ticks on infested birds). Of 459 birds, 111 (24.2%) had >/= 1 tick, a high proportion of infestation compared with past North American studies. The most frequently infested species were Carolina Wren (Thryothorus ludovicianus; 56%), Brown Thrasher (Toxostoma rufum; 37%), and Northern Cardinal (Cardinalis cardinalis; 27%). The Lone Star Tick (Amblyomma americanum) comprised half (51%; n = 322) of all ticks on birds; other species sampled included Gulf Coast Tick (A. maculatum) (36%) and Rabbit Tick (Haemaphysalis leporispalustris) (13%). Urbanization intensity (i.e., the percentage of developed land around sites) was inversely related to infestation prevalence for all birds combined and for Carolina Wren, but intensity of infestation was unrelated to urbanization. Our results suggest that non-migratory and migratory birds during sedentary periods are important carriers of ticks in urban areas, and that tick infestation patterns can be influenced by the level of urbanization in the surrounding landscape. Clarifying how urban birds influence tick populations, and how urbanization shapes bird-tick interactions, will increase understanding of tick-borne disease ecology in urban ecosystems.Oklahoma Center for the Advancement of Science and TechnologyNational Institute of Food and Agriculture (U.S.)United States. Department of AgriculturePeer reviewedEntomology and Plant PathologyNatural Resource Ecology and Managemen

    Correlates of Bird Collisions With Buildings Across Three North American Countries

    Get PDF
    Collisions with buildings cause up to 1 billion bird fatalities annually in North America. Bird-building collisions have recently received increased conservation, research, and policy attention. However, efforts to reduce collisions would benefit from studies conducted at large spatial scales across multiple study sites, with standardized methods, and with consideration of species- and life history-related variation and correlates of collisions. We addressed these research needs with a coordinated data collection effort at 40 sites across North America. We estimated collision vulnerability for 40 bird species by accounting for their North American population abundance, distribution overlap with study sites, and sampling effort. Of 10 species we identified as most vulnerable to collisions, some have been identified in past studies (e.g., Black-throated Blue Warbler [Setophaga caerulescens]) while others emerged for the first time (e.g., White-breasted Nuthatch [Sitta carolinensis]), possibly because we used a more standardized sampling approach than past studies. Analyses of species-specific collision correlates revealed that building size and glass area were positively associated with numbers of collisions for 5 of 8 species with enough observations to analyze independently. Vegetation around buildings influenced collisions for only 1 of those 8 species (Swainson\u27s Thrush [Catharus fuscescens]). We also found that life history predicted collisions; numbers of collisions were greatest for migratory, insectivorous, and woodland-inhabiting species. This coordinated, continent-wide study provides new insight into the species most vulnerable to building collisions, making them potentially in greatest need of conservation attention to reduce collisions. This study also lends insight into species- and life history-related variation and correlates of building collisions, information that can help refine collision management efforts

    Influence of olfactory and visual cover on nest site selection and nest success for grassland-nesting birds

    Get PDF
    Habitat selection by animals is influenced by and mitigates the effects of predation and environmental extremes. For birds, nest site selection is crucial to offspring production because nests are exposed to extreme weather and predation pressure. Predators that forage using olfaction often dominate nest predator communities; therefore, factors that influence olfactory detection (e.g., airflow and weather variables, including turbulence and moisture) should influence nest site selection and survival. However, few studies have assessed the importance of olfactory cover for habitat selection and survival. We assessed whether ground‐nesting birds select nest sites based on visual and/or olfactory cover. Additionally, we assessed the importance of visual cover and airflow and weather variables associated with olfactory cover in influencing nest survival. In managed grasslands in Oklahoma, USA, we monitored nests of Northern Bobwhite (Colinus virginianus), Eastern Meadowlark (Sturnella magna), and Grasshopper Sparrow (Ammodramus savannarum) during 2015 and 2016. To assess nest site selection, we compared cover variables between nests and random points. To assess factors influencing nest survival, we used visual cover and olfactory‐related measurements (i.e., airflow and weather variables) to model daily nest survival. For nest site selection, nest sites had greater overhead visual cover than random points, but no other significant differences were found. Weather variables hypothesized to influence olfactory detection, specifically precipitation and relative humidity, were the best predictors of and were positively related to daily nest survival. Selection for overhead cover likely contributed to mitigation of thermal extremes and possibly reduced detectability of nests. For daily nest survival, we hypothesize that major nest predators focused on prey other than the monitored species’ nests during high moisture conditions, thus increasing nest survival on these days. Our study highlights how mechanistic approaches to studying cover informs which dimensions are perceived and selected by animals and which dimensions confer fitness‐related benefits.Peer reviewedNatural Resource Ecology and Managemen

    Quantitative synthesis of the role of birds in carrying ticks and tick-borne pathogens in North America

    Get PDF
    Birds play a central role in the ecology of tick-borne pathogens. They expand tick populations and pathogens across vast distances and serve as reservoirs that maintain and amplify transmission locally. Research into the role of birds for supporting ticks and tick-borne pathogens has largely been descriptive and focused in small areas. To expand inference beyond these studies, we conducted a quantitative review at the scale of North America to identify avian life history correlates of tick infestation and pathogen prevalence, calculate species-level indices of importance for carrying ticks, and identify research gaps limiting understanding of tick-borne pathogen transmission. Across studies, 78 of 162 bird species harbored ticks, yielding an infestation prevalence of 1981 of 38,929 birds (5.1�%). Avian foraging and migratory strategies interacted to influence infestation. Ground-foraging species, especially non-migratory ground foragers, were disproportionately likely to have high prevalence and intensity of tick infestation. Studies largely focused on Borrelia burgdorferi, the agent of Lyme disease, and non-migratory ground foragers were especially likely to carry B. burgdorferi-infected ticks, a finding that highlights the potential importance of resident birds in local pathogen transmission. Based on infestation indices, all 'super-carrier' bird species were passerines. Vast interior areas of North America, many bird and tick species, and most tick-borne pathogens, remain understudied, and research is needed to address these gaps. More studies are needed that quantify tick host preferences, host competence, and spatiotemporal variation in pathogen prevalence and vector and host abundance. This information is crucial for predicting pathogen transmission dynamics under future global change.Peer reviewedNatural Resource Ecology and ManagementEntomology and Plant Patholog

    Variation in tick load among bird body parts: Implications for studying the role of birds in the ecology and epidemiology of tick-borne diseases

    Get PDF
    Wild birds play important roles in the maintenance and dispersal of tick populations and tick-borne pathogens, yet in field studies of tick-borne disease ecology and epidemiology there is limited standardization of how birds are searched for ticks. We conducted a qualitative literature review of 100 field studies where birds were searched for ticks to characterize which parts of a bird's anatomy are typically sampled. To increase understanding of potential biases associated with different sampling approaches, we described variation in tick loads among bird body parts using field-collected data from 459 wild-caught birds that were searched across the entire body. The literature review illustrated a lack of clarity and consistency in tick-searching protocols: 57% of studies did not explicitly report whether entire birds or only particular body parts were searched, 34% reported concentrating searches on certain body parts (most frequently the head only), and only 9% explicitly reported searching the entire bird. Based on field-collected data, only 22% of ticks were found on the head, indicating that studies focusing on the head likely miss a large proportion of ticks. We provide tentative evidence that feeding locations may vary among tick species; 89% of Amblyomma americanum, 73% of Ambloyomma maculatum, and 56% of Haemaphysalis leporispalustris were on body parts other than the head. Our findings indicate a need for clear reporting and increased standardization of tick searching methodologies, including sampling the entire bird body, to provide an unbiased understanding of the role of birds in the maintenance and emergence of tick-borne pathogens.Peer reviewedEntomology and Plant PathologyNatural Resource Ecology and Managemen

    Auxiliary-level-assisted operations with charge qubits in semiconductors

    Full text link
    We present a new scheme for rotations of a charge qubit associated with a singly ionized pair of donor atoms in a semiconductor host. The logical states of such a qubit proposed recently by Hollenberg et al. are defined by the lowest two energy states of the remaining valence electron localized around one or another donor. We show that an electron located initially at one donor site can be transferred to another donor site via an auxiliary molecular level formed upon the hybridization of the excited states of two donors. The electron transfer is driven by a single resonant microwave pulse in the case that the energies of the lowest donor states coincide or two resonant pulses in the case that they differ from each other. Depending on the pulse parameters, various one-qubit operations, including the phase gate, the NOT gate, and the Hadamard gate, can be realized in short times. Decoherence of an electron due to the interaction with acoustic phonons is analyzed and shown to be weak enough for coherent qubit manipulation being possible, at least in the proof-of-principle experiments on one-qubit devices.Comment: Extended version of cond-mat/0411605 with detailed discussion of phonon-induced decoherence including dephasing and relaxation; to be published in JET

    A Science-Based Policy for Managing Free-Roaming Cats

    Get PDF
    Free-roaming domestic cats (i.e., cats that are owned or unowned and are considered ‘at large’) are globally distributed non-native species that have marked impacts on biodiversity and human health. Despite clear scientific evidence of these impacts, free-roaming cats are either unmanaged or managed using scientifically unsupported and ineffective approaches (e.g., trap-neuter-release [TNR]) in many jurisdictions around the world. A critical first initiative for effective, science-driven management of cats must be broader political and legislative recognition of free-roaming cats as a non-native, invasive species. Designating cats as invasive is important for developing and implementing science-based management plans, which should include efforts to prevent cats from becoming free-roaming, policies focused on responsible pet ownership and banning outdoor cat feeding, and better enforcement of existing laws. Using a science-based approach is necessary for responding effectively to the politically charged and increasingly urgent issue of managing free-roaming cat populations
    corecore