4 research outputs found

    Effects of the ICE-T Microphysics Scheme in HARMONIE-AROME on Estimated Ice Loads on Transmission Lines

    Get PDF
    In-cloud icing can cause damage to infrastructure and is challenging to forecast due to lack of a good representation of supercooled liquid water (SLW) in numerical weather prediction (NWP) models. We validate the new microphysics scheme, ICE-T, implemented into the NWP model HARMONIE-AROME, in full 3D simulations running over a 3 month period from December 1st 2016 to February 28th 2017. Output from the model simulations are first compared with conventional observations to evaluate the overall quality, and then used as input to an ice accretion model (IAM) and compared against measured ice loads at the two test sites Hardingnuten and Ålvikfjellet. The results show a clear shift towards more cloud water and snow, and less graupel and cloud ice. This shift leads to less precipitation along the coast and more inland. The estimated ice loads based on the cloud water from the simulations are generally increased. We also focus on two different icing events during January 9–18 and February 1–14. During the first event, both the run in its original configuration and the run with ICE-T overestimated the ice loads, while the second event was underestimated. For Ålvikfjellet ICE-T gives the best estimates, while for Hardingnuten the ice loads are overestimated when the wind direction is from the southeast. This is due to local terrain shielding not captured by the model. During the Feb 1–14 event, the wind direction was generally easterly, which makes comparison between the simulations and the observations more reliable. In this case, ICE-T gives a better ice load estimate. Although there are major uncertainties, especially concerning the number concentration of cloud droplets, and local terrain effects, ICE-T appears to give a better estimate of the ice loads.publishedVersio

    An evaluation of disdrometer as an icing indicator on power lines : intercomparison of observations and model data

    Get PDF
    Atmosfærisk ising på kraftledninger er den enkeltfaktoren som har størst økonomisk konsekvens for investeringskostnadene knyttet til nye luftledninger. I tillegg er store islaster, som kan komme opp i flere hundre kilo per meter ledning, en trussel for mennesker og omkringliggende infrastruktur. Samtidig er ising den miljøpåvirkningen på ledninger som er minst kjent. Derfor kan nye metoder å detektere ising på være viktige varslingsverktøy. Denne oppgaven undersøker om laser disdrometeret ''Thies LPM'' kan detektere ising, og om det i kombinasjon med andre værsensorer har potensial til å operere som varslingsverktøy. Tidserier fra observasjoner fra to testfelt har blitt analysert. I tillegg har det blitt gjennomført fysiske eksperimenter for å analysere egenskapene til disdrometeret. Dette har gitt et bredt grunnlag for å karakterisere egenskaper og begrensninger til disdrometeret. Analysen viser en sterk vindpåvirkning av både disdrometer- og islastobservasjoner. Virkningen av instrumentenes begrensninger på den foreliggende studien blir diskutert i detalj, og forbedringer til eksperimentoppsettet blir presentert. En sammenstilling av diameter og fallhastigheter for nedbørpartikler observert med Thies LPM med observasjoner av islast indikerer at et disdrometer alene ikke er tilstrekkelig til å påvise atmosfærisk ising. Det beste resultatet tilsier at Thies LPM har 32 % treffsikkerhet på 26 % av alle isingshendelser. Ved det utfallet har Thies LPM litt over 8 % sjanse for å detektere en vilkårlig isingshendelse. Data fra disdrometeret har imidlertid vist seg å være nyttige i validering og forbedring av den delen av værmodellen HARMONIE-AROME som kan brukes til å varsle ising.Atmospheric icing is the single factor which has the biggest economic consequences for the investment costs associated with new power lines. The ice can accumulate to several hundred kilograms per meter line and it can be a threat for both human safety and nearby infrastructure. Several recent experiences of damage on power lines due to high ice loads illustrates the need to take atmospheric icing carefully into account in both the planning and operational phase of a power line project. However, the atmospheric icing is the environmental impact on power lines that is least known. New methods to detect icing will have potential to serve as a warning system to prevent power breakdowns and other accidents. This thesis evaluates if a laser disdrometer (Thies LPM) can detect signals of icing. The potential of Thies LPM to serve as a warning system for critical icing conditions, in cooperation with other weather sensors, have been investigated. Timeseries of observations from two different test sites have been analysed. In addition, physical experiments with the aim to analyse the characteristics and limitations of the disdrometer have been performed. The experiments and analysis on timeseries show a strong influence from wind on both the disdrometer and ice load sensor. The impact from the sensors limitations is discussed in detail, along with suggested improvements. Distribution of diameters and velocities of precipitation particles observed with Thies LPM compared with ice loads from a nearby power line, indicates that a disdrometer alone is not able to detect atmospheric icing. The best results suggest that Thies LPM have a hit-rate of 32 % on 26 % of all icing events. That means that Thies LPM has 8 % total chance to detect an arbitrary icing event. Despite poor results, data from the disdrometer have shown to be useful for validation and improvement of the part of the numerical weather forecast model HARMONIE-AROME that is used to predict icing.M-M

    Vurdering av disdrometer som isingsindikator på kraftledninger : sammenlikning av observasjoner og modelldata

    No full text
    Atmosfærisk ising på kraftledninger er den enkeltfaktoren som har størst økonomisk konsekvens for investeringskostnadene knyttet til nye luftledninger. I tillegg er store islaster, som kan komme opp i flere hundre kilo per meter ledning, en trussel for mennesker og omkringliggende infrastruktur. Samtidig er ising den miljøpåvirkningen på ledninger som er minst kjent. Derfor kan nye metoder å detektere ising på være viktige varslingsverktøy. Denne oppgaven undersøker om laser disdrometeret ''Thies LPM'' kan detektere ising, og om det i kombinasjon med andre værsensorer har potensial til å operere som varslingsverktøy. Tidserier fra observasjoner fra to testfelt har blitt analysert. I tillegg har det blitt gjennomført fysiske eksperimenter for å analysere egenskapene til disdrometeret. Dette har gitt et bredt grunnlag for å karakterisere egenskaper og begrensninger til disdrometeret. Analysen viser en sterk vindpåvirkning av både disdrometer- og islastobservasjoner. Virkningen av instrumentenes begrensninger på den foreliggende studien blir diskutert i detalj, og forbedringer til eksperimentoppsettet blir presentert. En sammenstilling av diameter og fallhastigheter for nedbørpartikler observert med Thies LPM med observasjoner av islast indikerer at et disdrometer alene ikke er tilstrekkelig til å påvise atmosfærisk ising. Det beste resultatet tilsier at Thies LPM har 32 % treffsikkerhet på 26 % av alle isingshendelser. Ved det utfallet har Thies LPM litt over 8 % sjanse for å detektere en vilkårlig isingshendelse. Data fra disdrometeret har imidlertid vist seg å være nyttige i validering og forbedring av den delen av værmodellen HARMONIE-AROME som kan brukes til å varsle ising

    Effects of the ICE-T Microphysics Scheme in HARMONIE-AROME on Estimated Ice Loads on Transmission Lines

    Get PDF
    In-cloud icing can cause damage to infrastructure and is challenging to forecast due to lack of a good representation of supercooled liquid water (SLW) in numerical weather prediction (NWP) models. We validate the new microphysics scheme, ICE-T, implemented into the NWP model HARMONIE-AROME, in full 3D simulations running over a 3 month period from December 1st 2016 to February 28th 2017. Output from the model simulations are first compared with conventional observations to evaluate the overall quality, and then used as input to an ice accretion model (IAM) and compared against measured ice loads at the two test sites Hardingnuten and Ålvikfjellet. The results show a clear shift towards more cloud water and snow, and less graupel and cloud ice. This shift leads to less precipitation along the coast and more inland. The estimated ice loads based on the cloud water from the simulations are generally increased. We also focus on two different icing events during January 9–18 and February 1–14. During the first event, both the run in its original configuration and the run with ICE-T overestimated the ice loads, while the second event was underestimated. For Ålvikfjellet ICE-T gives the best estimates, while for Hardingnuten the ice loads are overestimated when the wind direction is from the southeast. This is due to local terrain shielding not captured by the model. During the Feb 1–14 event, the wind direction was generally easterly, which makes comparison between the simulations and the observations more reliable. In this case, ICE-T gives a better ice load estimate. Although there are major uncertainties, especially concerning the number concentration of cloud droplets, and local terrain effects, ICE-T appears to give a better estimate of the ice loads
    corecore