12 research outputs found

    Characterization of anti-proliferative and anti-oxidant effects of nano-sized vesicles from Brassica oleracea L. (Broccoli)

    Get PDF
    In this in vitro study, we test our hypothesis that Broccoli-derived vesicles (BDVs), combining the anti-oxidant properties of their components and the advantages of their structure, can influence the metabolic activity of different cancer cell lines. BDVs were isolated from homogenized fresh broccoli (Brassica oleracea L.) using a sucrose gradient ultracentrifugation method and were characterized in terms of physical properties, such as particle size, morphology, and surface charge by transmission electron microscopy (TEM) and laser doppler electrophoresis (LDE). Glucosinolates content was assessed by RPLC–ESI–MS analysis. Three different human cancer cell lines (colorectal adenocarcinoma Caco-2, lung adenocarcinoma NCI-H441 and neuroblastoma SHSY5Y) were evaluated for metabolic activity by the MTT assay, uptake by fluorescence and confocal microscopy, and anti-oxidant activity by a fluorimetric assay detecting intracellular reactive oxygen species (ROS). Three bands were obtained with average size measured by TEM based size distribution analysis of 52 nm (Band 1), 70 nm (Band 2), and 82 nm (Band 3). Glucobrassicin, glucoraphanin and neoglucobrassicin were found mostly concentrated in Band 1. BDVs affected the metabolic activity of different cancer cell lines in a dose dependent manner compared with untreated cells. Overall, Band 2 and 3 were more toxic than Band 1 irrespective of the cell lines. BDVs were taken up by cells in a dose- and time-dependent manner. Pre-incubation of cells with BDVs resulted in a significant decrease in ROS production in Caco-2 and NCI-H441 stimulated with hydrogen peroxide and SHSY5Y treated with 6-hydroxydopamine, with all three Bands. Our findings open to the possibility to find a novel “green” approach for cancer treatment, focused on using vesicles from broccoli, although a more in-depth characterization of bioactive molecules is warranted

    High Efficiency and Broadband Microstrip Leaky-Wave Antenna

    Get PDF
    A novel layout of leaky-wave antennas based on tapered design has been proposed and investigated. The new tapered leaky-wave antenna (LWA) was designed running a simple procedure which uses an FDTD code, and using a suitable metal walls down the centerline along the length of the antenna connecting the conductor strip and the ground plane, which allows to use only half of the structure, the adoption of a simple feeding, and the reduction of sidelobes. The good performance of this new tapered microstrip LWA, with reference to conventional uniform microstrip LWAs, is mainly the wider band of 33% for VSWR <2, higher gain (12 dBi), and higher efficiency (up to 85%). Furthermore, from the theoretical analysis we can see that, decreasing the relative dielectric constant of the substrate, the bandwidth of the leaky-wave antenna becomes much wider, improving its performance

    Compact substrate integrated waveguide six-port directional coupler for X-band applications

    No full text
    A substrate integrated waveguide six-port directional coupler is designed and characterized. The circuit exploits a very compact size and good reflection and transmission characteristics, as it exhibits both return loss and isolation higher than 15 dB over a 13% bandwidth. The device is made by connecting all ports to a single junction which mixes all signals. Some prototypes have been built and experimental results show a very good agreement with simulations

    Broadband single-layer slotted array antenna in SIW technology

    No full text
    A squint-less slot-antenna array (2D), built on a single substrate integrated waveguides (SIW), is shown. The effort needed for designing a suitable feeding network in SIW technology is justified in view of obtaining lightweight, low profile and low-cost antennas for many applications, including direct broadcast satellite. A proper definition of a “H”-shaped sub-array, made of four slot-pairs, is used to improve the input matching over a wide band. This choice allows remarkable simplification of the fabrication process, as the slots are cut directly in one of the metallic planes forming the SIW

    Eco-Friendly Catalytic Synthesis of Top Value Chemicals from Valorization of Cellulose Waste

    No full text
    : The total amount of cellulose from paper, wood, food, and other human activity waste produced in the EU is in the order of 900 million tons per year. This resource represents a sizable opportunity to produce renewable chemicals and energy. This paper reports, unprecedently in the literature, the usage of four different urban wastes such as cigarette butts, sanitary pant diapers, newspapers, and soybean peels as cellulose fonts to produce valuable industrial intermediates such as levulinic acid (LA), 5-acetoxymethyl-2-furaldehyde (AMF), 5-(hydroxymethyl)furfural (HMF), and furfural. The process is accomplished by the hydrothermal treatment of cellulosic waste using both BrÞnsted and Lewis acid catalysts such as CH3COOH (2.5-5.7 M), H3PO4 (15%), and Sc(OTf)3 (20% w:w), thus obtaining HMF (22%), AMF (38%), LA (25-46%), and furfural (22%) with good selectivity and under relatively mild conditions (T = 200 °C, time = 2 h). These final products can be employed in several chemical sectors, for example, as solvents, fuels, and for new materials as a monomer precursor. The characterization of matrices was accomplished by FTIR and LCSM analyses, demonstrating the influence of morphology on reactivity. The low e-factor values and the easy scale up render this protocol suitable for industrial applications

    Feasibility Investigation of SIW Cavity-Backed Patch Antenna Array for Ku Band Applications

    No full text
    A cavity-backed microstrip patch antenna array was optimized in the Ku band. The backing cavity was designed under each patch antenna of the array in order to increase the bandwidth and minimize the intercoupling among the radiating elements. Substrate integrated waveguide (SIW) technology was employed to fabricate the above-mentioned cavity below the radiating patch. More precisely, four microstrip array antennas, made by 2 &#215; 2, 4 &#215; 4, 8 &#215; 8, and 16 &#215; 16 elements were designed, fabricated, and characterized. The measured maximum gain was G = 13 dBi, G = 18.7 dBi, G = 23.8 dBi, and G = 29.2 dBi, respectively. The performance of the proposed antenna arrays was evaluated in terms of radiation pattern and bandwidth. An extensive feasibility investigation was performed even from the point of different materials/costs in order to state the potential of the engineered antennas in actual applications. The obtained results indicate that a cavity-backed microstrip patch antenna is a feasible solution for broadband digital radio and other satellite communication overall for niche applications

    Steel Slag as New Catalyst for the Synthesis of Fames from Soybean Oil

    No full text
    For the first time, secondary steel slag, the material directly coming from ladle treatments, is used as a catalyst for the biodiesel production without undergoing any preliminary chemical or thermal modifications. Catalytic material 1, which has been pre-ground to sizes below 230 mesh, has been characterized for the surface textural properties and used as a catalyst in the transesterification of triglycerides of soybean oil to produce biodiesel. Reaction conditions were optimized by DOE method, revealing no interdependence between reaction parameters and results, and showed a catalytic activity comparable with that of an analogous slag-deriving catalyst reported in the literature

    First Report on the Occurrence of Cucurbitacins in an Italian Melon Landrace (Cucumis melo L.)

    No full text
    Scopatizzo, belonging to the Cucumis melo L., is a local variety of Apulia (Southern Italy), which is consumed as unripe melon as an alternative of cucumber due to its better-quality profile and for the absence of cucurbitacins. The latter are tetracyclic triterpenes synthesized by some Cucurbitaceae species, known to confer an unpleasant taste to fruits and cause health problems. Following the discovery of Scopatizzo fruits with bitter taste, cucurbitacins were searched for in their ethanolic extract. Flow injection analysis with detection performed by atmospheric pressure chemical ionization-high resolution mass spectrometry provided evidence for the presence of at least four cucurbitacins, which were absent in typical, sweet-tasting fruits. Further insight into this discovery will be required in the near future to assess if the detection of cucurbitacins may mark the appearance of genotypes whose fruits have features not compatible with commercialization

    Feasibility investigation of low cost substrate integrated waveguide (SIW) directional couplers

    No full text
    In this paper, the feasibility of Substrate Integrated Waveguide (SIW) couplers, fabricated using single-layer TACONIC RF-35 dielectric substrate is investigated. The couplers have been produced employing a standard PCB process. The choice of the TACONIC RF-35 substrate as alternative to other conventional materials is motivated by its lower cost and high dielectric constant, allowing the reduction of the device size. The coupler requirements are 90-degree phase shift between the output and the coupled ports and frequency bandwidth from about 10.5 GHz to 12.5 GHz. The design and optimization of the couplers have been performed by using the software CST Microwave Studio©. Eight different coupler configurations have been designed and compared. The better three couplers have been fabricated and characterized. The proposed SIW directional couplers could be integrated within more complex planar circuits or utilized as stand-alone devices, because of their compact size. They exhibit good performance and could be employed in communication applications as broadcast signal distribution and as key elements for the construction of other microwave devices and system
    corecore