52 research outputs found

    Solar water splitting in a molecular photoelectrochemical cell

    Get PDF
    Solar water splitting into H2 and O2 with visible light has been achieved by a molecular assembly. The dye sensitized photoelectrosynthesis cell configuration combined with core–shell structures with a thin layer of TiO2 on transparent, nanostructured transparent conducting oxides (TCO), with the outer TiO2 shell formed by atomic layer deposition. In this configuration, excitation and injection occur rapidly and efficiently with the injected electrons collected by the nanostructured TCO on the nanosecond timescale where they are collected by the planar conductive electrode and transmitted to the cathode for H2 production. This allows multiple oxidative equivalents to accumulate at a remote catalyst where water oxidation catalysis occurs

    All-optical control of a single plasmonic nanoantenna–ITO hybrid

    No full text
    We demonstrate experimentally picosecond all-optical control of a single plasmonic nanoantenna embedded in indium tin oxide (ITO). We identify a picosecond response of the antenna–ITO hybrid system, which is distinctly different from transient bleaching observed for gold antennas on a nonconducting SiO2 substrate. Our experimental results can be explained by the large free-carrier nonlinearity of ITO, which is enhanced by plasmon-induced hot-electron injection from the gold nanoantenna into the conductive oxide. The combination of tunable antenna–ITO hybrids with nanoscale plasmonic energy transfer mechanisms, as demonstrated here, opens a path for new ultrafast devices to produce nanoplasmonic switching and control.<br/

    Nanophononics: state of the art and perspectives

    Full text link

    Vapor phase infiltration of zinc oxide into thin films of: Cis -polyisoprene rubber

    No full text
    Elastomers are an important class of polymers for many applications. Often, additives are added to the polymer matrix of elastomers to promote vulcanization or enhance physical or chemical properties. In this study, vapor phase infiltration (VPI) is investigated for transforming unvulcanized cis-polyisoprene (from natural rubber) into an organic/inorganic hybrid material. Specifically, we examine single-cycle infiltration with diethylzinc (DEZ) and water to form infiltrated zinc oxide species. Interestingly, low-temperature pre-heating of the cis-polyisoprene acutely affects the processes of infiltration, including diffusivity, maximum solubility, and chemical reactivity. We attribute these effects to a combination of film relaxation and oxidation. Independent of thermal pre-treatments, all infiltration processes exhibited consistent zinc oxide loading irrespective of purge time between the DEZ and water doses, indicating the presence of a strongly bound intermediate state between the DEZ precursor and the cis-polyisoprene polymer. Increasing infiltration process temperature accelerates diffusion and lowers the maximum solubility, in accordance with Fick's law and gas phase sorption equilibrium. Resulting organic-inorganic hybrid films show enhanced resistance to dissolution in toluene, a good solvent for the pure polymer

    Microstructure and heteroatom dictate the doping mechanism and thermoelectric properties of poly(alkyl-chalcogenophenes)

    No full text
    Heteroatom substitution can favorably alter electronic transport in conductive polymers to improve their thermoelectric performance. This study reports the spectroscopic, structural, and thermoelectric properties of poly(3-(3′,7′-dimethyloctyl) chalcogenophenes) or P3RX doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), where the heteroatom [X = thiophene (T), selenophene (Se), tellurophene (Te)], the doping methodology, and extent of doping are systematically varied. Spectroscopic measurements reveal that while all P3RX polymers are appreciably doped, the doping mechanism is inherently different. Poly(3-hexylthiophene) (P3HT, used as a control) and poly(3-(3′,7′-dimethyloctyl)tellurophene) (P3RTe) are doped primarily via integer charge transfer (ICT), whereas poly(3-(3′,7′-dimethyloctyl)selenophene) (P3RSe) and poly(3-(3′,7′-dimethyloctyl)thiophene) (P3RT) are doped via charge transfer complex (CTC) mechanisms. Despite these differences, all polymers saturate with roughly the same number of F4TCNQ counterions (1 dopant per 4 to 6 heterocycles), reinforcing the idea that the extent of charge transfer varies with the doping mechanism. Grazing incidence wide-angle x-ray scattering measurements provide insight into the structural driving forces behind different doping mechanisms—P3RT and P3RSe have similar microstructures in which F4TCNQ intercalates between the π-stacked backbones resulting in CTC doping (localized carriers), while P3HT and P3RTe have microstructures in which F4TCNQ intercalates in the alkyl side chain region, giving rise to ICT doping (delocalized carriers). These structural and spectroscopic observations shed light on why P3HT and P3RTe obtain electrical conductivities ca. 3 S/cm, while P3RT and P3RSe have conductivities &lt;10−3 S/cm under the same thin film processing conditions. Ultimately, this work quantifies the effects of heteroatom, microstructural ordering, extent of doping, and doping mechanism, thereby providing rational guidance for designing future thermoelectric polymer-dopant systems
    corecore