13 research outputs found

    Estudio termodinámico de una pila de combustible de membrana polimérica de alta temperatura (HTPEMFC) mediante simulación numérica en códigos de fuentes libres (OpenFOAM)

    Get PDF
    El presente trabajo tiene como objetivo implementar, en un modelo de pila de combustible de membrana polimérica de alta temperatura, un modulo de calculo previo para la temperatura de operacion y un modelo de disipacion de calor por conveccion natural. Se analizan los resultados y las mejoras que ofrecen.<br /

    Modelling the effects of E/Z photoisomerization of a cyclocurcumin analogue on the properties of cellular lipid membranes

    Get PDF
    The use of photosensitive molecules capable of isomerizing under light stimuli, and thus induce perturbation in biological systems, is becoming increasingly popular for potential light-activated chemotherapeutic purposes. We recently show that a cyclocurcumin derivative (CCBu), may be suitable for light-activated chemotherapy and may constitute a valuable alternative to traditional photodynamic therapy, due to its oxygen-independent mechanism of action, which allows the treatment of hypoxic solid tumors. In particular, we have shown that the E/Z photoisomerization of CCBu correlates with strong perturbations of model lipid bilayers. In this work, we perform all-atom classical molecular dynamics for a more complex bilayer, whose composition is, thus, much closer to eukaryotic outer cell membranes. We have evidenced important differences in the interaction pathway between CCBu and the complex lipid bilayer as compared to previous models, concerning both the membrane penetration capacity and the isomerization-induced perturbations. While we confirm that structural perturbations of the lipid membrane are induced by isomerization, we also show how the use of a simplified membrane model can result in an oversimplification of the system and hinder key physical and biological phenomena. Although, CCBu may be considered as a suitable candidate for light-activated chemotherapy, we also underline how the inclusion of bulkier substituents, inducing larger perturbations upon photoisomerization, may enhance its efficiency

    Demonstration of an azobenzene derivative based solar thermal energy storage system

    Get PDF
    Molecules capable of reversible storage of solar energy have recently attracted increasing interest, and are often referred to as molecular solar thermal energy storage (MOST) systems. Azobenzene derivatives have great potential as an active MOST candidate. However, an operating lab scale experiment including solar energy capture/storage and release has still not been demonstrated. In the present work, a liquid azobenzene derivative is tested comprehensively for this purpose. The system features several attractive properties, such as a long energy storage half-life (40 h) at room temperature, as well as an excellent robustness demonstrated by optically charging and discharging the molecule over 203 cycles without any sign of degradation (total operation time of 23 h). Successful measurements of solar energy storage under simulated sunlight in a microfluidic chip device have been achieved. The identification of two heterogeneous catalyst systems during testing enabled the construction of a fixed bed flow reactor demonstrating catalyzed back-conversion from cis to trans azobenzene at room temperature under flow conditions. The working mechanism of the more suitable catalytic candidate was rationalized by detailed density functional theory (DFT) calculations. Thus, this work provides detailed insights into the azobenzene based MOST candidate and identifies where the system has to be improved for future solar energy storage applications

    Macroscopic heat release in a molecular solar thermal energy storage system

    Get PDF
    The development of solar energy can potentially meet the growing requirements for a global energy system beyond fossil fuels, but necessitates new scalable technologies for solar energy storage. One approach is the development of energy storage systems based on molecular photoswitches, so-called molecular solar thermal energy storage (MOST). Here we present a novel norbornadiene derivative for this purpose, with a good solar spectral match, high robustness and an energy density of 0.4 MJ kg-1. By the use of heterogeneous catalyst cobalt phthalocyanine on a carbon support, we demonstrate a record high macroscopic heat release in a flow system using a fixed bed catalytic reactor, leading to a temperature increase of up to 63.4 \ub0C (83.2 \ub0C measured temperature). Successful outdoor testing shows proof of concept and illustrates that future implementation is feasible. The mechanism of the catalytic back reaction is modelled using density functional theory (DFT) calculations rationalizing the experimental observations

    Design and tuning of photoswitches for solar energy storage

    No full text
    Current energy demand makes it compulsory to explore alternative energy sources beyond fossil fuels. Molecular solar thermal (MOST) systems have been proposed as a suitable technology for the use and storage of solar energy. Compounds used for this application need to fulfil a long series of requirements, being the absorption of sunlight and the energy stored some of the most critical. In this paper, we study different families of well-known molecular photoswitches from the point of view of their potential use as MOST. Starting from basic structures, we use density functional theory (DFT) computational modelling to propose two different strategies to increase the energy difference between isomers and to tune the absorption spectrum. The inclusion of a mechanical lock in the structure, via an alkyl chain and the presence of a hydrogen bonding are shown to directly influence the energy difference and the absorption spectra. Results shown here prove that these two approaches could be relevant for the design of new compounds with improved performance for MOST applications

    Don’t help them to bury the light. The interplay between intersystem crossing and hydrogen transfer in photoexcited curcumin revealed by state-hopping dynamics.

    No full text
    Curcumin is a natural compound extracted from turmeric (curcuma longa), which has shown remarkable antiinflammatory, antibacterial, and possibly anticancert properties. The intense absorption in the visible domain, and the possibility of intersystem crossing make curcumin attractive also for photodynamic therapy purposes. In the present contribution we unravel, thanks to non-adiabatic state hopping dynamics, the competition between intersystem crossing and hydrogen transfer within enol, the most stable tautomer of curcumin. Most notably, we show that while hydrogen-transfer is ultrafast and happens in the sub-ps regime, intersystem crossing is still present, as shown by the non-negligible population of the triplet state manifold after 2 ps. Hence, while the hydrogen transfer channel can act as an unfavorable deactivating channel, curcumin, also in the red-shifted absorption enol form, can still be regarded as potentially favorable for photodynamic therapy applications

    A Portrait of the Chromophore as a Young System. Quantum-Derived Force Field Unraveling Solvent Reorganization Upon Optical Excitation of Cyclocurcumin Derivatives

    No full text
    The study of fast non-equilibrium solvent relaxation in organic chromophores is still challenging for molecular modeling and simulation approaches, and is often overlooked, even in the case of non-adiabatic dynamics simulations. Yet, especially in the case of photoswitches, the interaction with the environment can strongly modulate the photophysical outcomes. To unravel such a delicate interplay, in the present contribution we resorted to a mixed quantum-classical approach, based on quantum mechanically derived force fields. The main task is to rationalize the solvent reorganization pathways in chromophores derived from cyclocurcumin, suitable for light-activated chemotherapy to destabilize cellular lipid membranes. The accurate and reliable decryption delivered by the quantum-derived force fields points to important differences in the solvent reorganization, which further justify the different photo-isomerization quantum yields

    Photochemistry and photophysics of mycosporine-like amino acids and gadusols, nature's ultraviolet screens

    Get PDF
    Mycosporine-like amino acids (MAAs) and related gadusols are among the most prominent examples of metabolites suggested to act as UV-sunscreens. This review illustrates how experimental and theoretical studies on model MAAs and gadusol offer a helpful description of the photoprotective mechanism at the molecular level. This knowledge may contribute to the rational design of chemical systems with predictable and tuneable response to light stimulus. Synthetic efforts to obtain MAAs and simplified related structures are also discussed.Fil: Losantos, Raul. Centro de Investigación en Síntesis Químicas; EspañaFil: Sampedro, Diego. Centro de Investigación en Síntesis Químicas; EspañaFil: Churio, Maria Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentin

    Modelling the effects of E/Z photoisomerization of a cyclocurcumin analogue on the properties of cellular lipid membranes

    No full text
    The use of photosensitive molecules capable of isomerizing under light stimuli, and thus induce perturbation in biological systems, is becoming increasingly popular for potential light-activated chemotherapeutic purposes. We recently show that a cyclocurcumin derivative (CCBu), may be suitable for light-activated chemotherapy and may constitute a valuable alternative to traditional photodynamic therapy, due to its oxygen-independent mechanism of action, which allows the treatment of hypoxic solid tumors. In particular, we have shown that the E/Z photoisomerization of CCBu correlates with strong perturbations of model lipid bilayers1. In this work, we perform all-atom classical molecular dynamics for a more complex bilayer, whose composition is, thus, much closer to eukaryotic outer cell membranes. We have evidenced important differences in the interaction pathway between CCBu and the complex lipid bilayer as compared to previous models, concerning both the membrane penetration capacity and the isomerization-induced perturbations. While, we confirm that structural perturbations of the lipid membrane are induced by isomerization, we also show how the use of a simplified membrane model can result in an oversimplification of the system and hinders key physical and biological phenomena. Although, CCBu derivative may be considered as suitable candidate for light-activated chemotherapy, we also underline how the inclusion of bulkier substituents, inducing larger perturbations upon photoisomerization, may enhanced its efficiency

    Synthesis and photoswitching properties of bioinspired dissymmetric gamma-pyrone, analogue of cyclocurcumin

    No full text
    Cyclocurcumin, a turmeric curcuminoid with potential therapeutic properties, is also a natural photoswitch that may undergo E/Z photoisomerization under UV light. In order to be further exploited in relevant biological applications, photoactivation under near infrared (NIR) irradiation is required. Such requirement can be met through opportune chemical modifications,and most notably by favoring two-photon absorption (TPA) probability. Herein, a general and efficient synthesis of a biomimetic 2,6-g-pyrone analogue of cyclocurcumin is described, motivated by the fact that molecular modeling previews an order of magnitude increase of the NIR TPA cross-section for the latter compared to the natural counterpart. Three retrosynthetic pathways have been identified (i) via an aryl-oxazole intermediate or via an aryl-diynone through (ii) a bottom-up or (iii) a top-down approach. While avoiding the passage through unstable synthons or low yield intermediate reactions, only the latest approach could conveniently afford the 2,6-g-pyrone analogue of cyclocurcumin, in ten steps and with an overall yield of 18%. The photophysical properties of our biomimetic analogue have also been characterized showing an improved photo-isomerization yield over the parent natural compound. The potentially improved non-linear optical properties, as well an enhanced stability, may be correlated to the enforcement of the planarity of the pyrone moiety leading to a quadrupolar D-p-A-p-D system.<br /
    corecore