56 research outputs found

    Molecular medicine of microRNAs: structure, function and implications for diabetes

    Get PDF
    MicroRNAs (miRNAs) are a family of endogenous small noncoding RNA molecules, of 19–28 nucleotides in length. In humans, up to 3% of all genes are estimated to encode these evolutionarily conserved sequences. miRNAs are thought to control expression of thousands of target mRNAs. Mammalian miRNAs generally negatively regulate gene expression by repressing translation, possibly through effects on mRNA stability and compartmentalisation, and/or the translation process itself. An extensive range of in silico and experimental techniques have been applied to our understanding of the occurrence and functional relevance of such sequences, and antisense technologies have been successfully used to control miRNA expression in vitro and in vivo. Interestingly, miRNAs have been identified in both normal and pathological conditions, including differentiation and development, metabolism, proliferation, cell death, viral infection and cancer. Of specific relevance and excitement to the area of diabetes research, miRNA regulation has been implicated in insulin secretion from pancreatic β-cells, diabetic heart conditions and nephropathy. Further analyses of miRNAs in vitro and in vivo will, undoubtedly, enable us determine their potential to be exploited as therapeutic targets in diabetes

    Investigation of mechanisms of multiple drug resistance using polymerase chain reaction

    Get PDF
    Control of transcription plays a critical role in the multi-step process that regulates gene expression. Understanding the regulation of gene expression therefore depends, in part, on the ability to accurately measure defined mRNA species in cell populations and tissues. In this study, the presence of a number of mRNAs putatively involved in the determination of multiple drug resistance (MDR) was investigated, using reverse transcriptase-polymerase chain reaction (RTPCR). This technique was evaluated at a semi-quantitative and a quantitative level, giving due consideration to the choice of primers for the RT and PCR reactions, controls, reproducibility of the technique, etc. mRNA levels were initially studied in sensitive cell lines and their corresponding MDR variants. Methods were then developed which enabled analysis of intact mRNA from paired normal and tumour biopsies and archival tissues (which were embedded in paraffin). Levels of two proteins (p-glycoprotein and Topoisomerase Ila) known to have a role in MDR were studied using Western blotting techniques to establish if the mRNA and corresponding protein levels correlated. MDR 1 expression was induced in cultured cells by short-term exposure to a chemotherapeutic drug. This induction corresponded to drug concentration and was associated with physiological signs of stress. A hammer-head ribozyme to MDR 1 was transfected into both a resistant cell line and a clonal subpopulation of its sensitive parental cell line (as a control). PCR (DNA) and RT-PCR (mRNA) experiments were conducted to verify the presence and successful transcription of the ribozyme in the cells. Toxicity assays were performed to establish if the presence of the ribozyme affected the MDR profile of the cell lines

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Proteomic screening of glucose-responsive and glucose non-responsive MIN-6 beta cells reveals differential expression of proteins involved in protein folding, secretion and oxidative stress

    Get PDF
    The glucose-sensitive insulin-secretion (GSIS) phenotype is relatively unstable in long-term culture of beta cells. The purpose of this study was to investigate relative changes in the proteome between glucose-responsive (low passage) and glucose non-responsive (high passage) murine MIN-6 pancreatic beta cells. The 2D-DIGE and subsequent DeCyder analysis detected 3351 protein spots in the pH range of 4–7. Comparing MIN-6(H) to MIN-6(L) and using a threshold of 1.2-fold, the number of proteins with a decrease in expression level was 152 (4.5%), similar was 3140 (93.7%) and increased 59 (1.8%). From the differentially expressed proteins identified in this study, groups of proteins associated with the endoplasmic reticulum (ER) and proteins involved in oxidative stress were found to be significantly decreased in the high-passage (H passage) cells. These proteins included endoplasmic reticulum protein 29 (ERp29); 78-kDa glucoserelated protein, (GRP78); 94-kDa glucose-related protein (GRP94); protein disulphide isomerase; carbonyl reductase 3; peroxidoxin 4 and superoxide dismutase 1. These results suggest that non- GSIS MIN-6 cells do not have the same ability/capacity of glucose-responsive MIN-6 cells to successfully fold, modify or secrete proteins and counteract the problems associated with oxidative stress

    An investigation of extracellular vesicles in bovine colostrum, first milk and milk over the lactation curve

    Get PDF
    peer-reviewedExtracellular vesicles (EVs) in milk have claimed benefits ranging from conveying immunological privilege to infants to being suitable as natural delivery vehicles for therapeutic drugs. However, a longitudinal study of bovine EVs quantities and characteristics in colostrum (COL), first milk (FM) and throughout the lactation curve of mature milk (MM) had never been performed and so was our aim. COL, FM and 9 months of MM samples were collected. Caseins -overlapping size with EVs- were removed. EVs were collected by density gradient ultracentrifugation and characterised by SDS-PAGE, Bradford assay, nanoparticle tracking analysis, immunoblotting, imaging flow cytometry analysis, and transmission electron microscopy. COL and FM had substantially more EVs than MM, with COL enriched in small EVs. No significant differences were observed between months 1–9 of MM. Altogether, although COL and FM are particularly rich sources of EVs, mature milk throughout the lactation curve is also an abundant source of intact EVs

    Investigation of the molecular profile of basal cell carcinoma using whole genome microarrays

    Get PDF
    BACKGROUND: Skin cancer accounts for 1/3 of all newly diagnosed cancer. Although seldom fatal, basal cell carcinoma (BCC) is associated with severe disfigurement and morbidity. BCC has a unique interest for researchers, as although it is often locally invasive, it rarely metastasises. This paper, reporting the first whole genome expression microarray analysis of skin cancer, aimed to investigate the molecular profile of BCC in comparison to non-cancerous skin biopsies. RNA from BCC and normal skin specimens was analysed using Affymetrix whole genome microarrays. A Welch t-test was applied to data normalised using dCHIP to identify significant differentially-expressed genes between BCC and normal specimens. Principal component analysis and support vector machine analysis were performed on resulting genelists, Genmapp was used to identify pathways affected, and GOstat aided identification of areas of gene ontology more highly represented on these lists than would be expected by chance. RESULTS: Following normalisation, specimens clustered into groups of BCC specimens and of normal skin specimens. Of the 54,675 gene transcripts/variants analysed, 3,921 were differentially expressed between BCC and normal skin specimens. Of these, 2,108 were significantly up-regulated and 1,813 were statistically significantly down-regulated in BCCs. CONCLUSION: Functional gene sets differentially expressed include those involved in transcription, proliferation, cell motility, apoptosis and metabolism. As expected, members of the Wnt and hedgehog pathways were found to be significantly different between BCC and normal specimens, as were many previously undescribed changes in gene expression between normal and BCC specimens, including basonuclin2 and mrp9. Quantitative-PCR analysis confirmed our microarray results, identifying novel potential biomarkers for BCC

    The development and validation of the Virtual Tissue Matrix, a software application that facilitates the review of tissue microarrays on line

    Get PDF
    BACKGROUND: The Tissue Microarray (TMA) facilitates high-throughput analysis of hundreds of tissue specimens simultaneously. However, bottlenecks in the storage and manipulation of the data generated from TMA reviews have become apparent. A number of software applications have been developed to assist in image and data management; however no solution currently facilitates the easy online review, scoring and subsequent storage of images and data associated with TMA experimentation. RESULTS: This paper describes the design, development and validation of the Virtual Tissue Matrix (VTM). Through an intuitive HTML driven user interface, the VTM provides digital/virtual slide based images of each TMA core and a means to record observations on each TMA spot. Data generated from a TMA review is stored in an associated relational database, which facilitates the use of flexible scoring forms. The system allows multiple users to record their interpretation of each TMA spot for any parameters assessed. Images generated for the VTM were captured using a standard background lighting intensity and corrective algorithms were applied to each image to eliminate any background lighting hue inconsistencies or vignetting. Validation of the VTM involved examination of inter-and intra-observer variability between microscope and digital TMA reviews. Six bladder TMAs were immunohistochemically stained for E-Cadherin, β-Catenin and PhosphoMet and were assessed by two reviewers for the amount of core and tumour present, the amount and intensity of membrane, cytoplasmic and nuclear staining. CONCLUSION: Results show that digital VTM images are representative of the original tissue viewed with a microscope. There were equivalent levels of inter-and intra-observer agreement for five out of the eight parameters assessed. Results also suggest that digital reviews may correct potential problems experienced when reviewing TMAs using a microscope, for example, removal of background lighting variance and tint, and potential disorientation of the reviewer, which may have resulted in the discrepancies evident in the remaining three parameters

    Perinatal derivatives: How to best validate their immunomodulatory functions

    Get PDF
    Perinatal tissues, mainly the placenta and umbilical cord, contain a variety of different somatic stem and progenitor cell types, including those of the hematopoietic system, multipotent mesenchymal stromal cells (MSCs), epithelial cells and amnion epithelial cells. Several of these perinatal derivatives (PnDs), as well as their secreted products, have been reported to exert immunomodulatory therapeutic and regenerative functions in a variety of pre-clinical disease models. Following experience with MSCs and their extracellular vesicle (EV) products, successful clinical translation of PnDs will require robust functional assays that are predictive for the relevant therapeutic potency. Using the examples of T cell and monocyte/macrophage assays, we here discuss several assay relevant parameters for assessing the immunomodulatory activities of PnDs. Furthermore, we highlight the need to correlate the in vitro assay results with preclinical or clinical outcomes in order to ensure valid predictions about the in vivo potency of therapeutic PnD cells/products in individual disease settings

    Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma

    Get PDF
    Background: Renal cancer patients respond poorly to conventional chemotherapy, this unresponsiveness may be attributable to multidrug resistance (MDR). The mechanisms of MDR in renal cancer are not fully understood and the specific contribution of ABC transporter proteins which have been implicated in the chemoresistance of various cancers has not been fully defined in this disease. Methods: The aim of this prospective study was to analyse by immunohistochemistry the expression of two of these transporter efflux pumps, namely MDR-1/P-gp (ABCB1) and MRP-1 (ABCC1) in archival material from 113 renal carcinoma patients. Results: In the largest study of its kind, results presented here show 100% of cases stained positively for P-gp and MRP-1 protein expression. Conclusion: However, although these findings do not prove a causal role, the high frequency of tumours expressing these efflux pumps suggests that they may be important contributors to the chemoresistance of this tumour type
    corecore