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MicroRNAs (miRNAs) are a family of endogenous small noncoding RNA
molecules, of 19–28 nucleotides in length. In humans, up to 3% of all genes are
estimated to encode these evolutionarily conserved sequences. miRNAs are
thought to control expression of thousands of target mRNAs. Mammalian
miRNAs generally negatively regulate gene expression by repressing
translation, possibly through effects on mRNA stability and
compartmentalisation, and/or the translation process itself. An extensive
range of in silico and experimental techniques have been applied to our
understanding of the occurrence and functional relevance of such sequences,
and antisense technologies have been successfully used to control miRNA
expression in vitro and in vivo. Interestingly, miRNAs have been identified in
both normal and pathological conditions, including differentiation and
development, metabolism, proliferation, cell death, viral infection and cancer.
Of specific relevance and excitement to the area of diabetes research, miRNA
regulation has been implicated in insulin secretion from pancreatic b-cells,
diabetic heart conditions and nephropathy. Further analyses of miRNAs in vitro
and in vivo will, undoubtedly, enable us determine their potential to be
exploited as therapeutic targets in diabetes.

Small RNAs are a family of regulatory noncoding
RNAs up to 40 nucleotides in length that can
induce gene silencing through specific base-
pairing with target mRNA molecules. Apart from
their major function of gene regulation (Ref. 1),
small RNAs in plants defend genomes against
random integration of transposable elements and
attack from invasive nucleic acids such as viruses

(Ref. 2); this mechanism of defence against viral
infection may also occur in mammals (Ref. 3).
MicroRNAs (miRNAs) represent a major class of
these small regulatory RNAs.

Following transcription of miRNA genes, one or
two miRNAs can be generated from a single
hairpin-loop precursor RNA (Ref. 4), although
some precursor molecules are known to contain
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more than six hairpin loops, referred to as miRNA
clusters (Ref. 5). miRNAs bind to complementary
sequences within the 30 untranslated region
(30 UTR) of their target mRNA transcript and, by
virtue of proteins associated with the miRNA,
usually direct target cleavage (if there is perfect
complementarity with the target), or
translational repression without cleavage of
target (if partial complementarity with target)
(Ref. 6). The ‘seed’ region (nucleotides 2–7) at
the 50 end of the miRNA is often sufficient for
specificity and functionality of the miRNA (Ref. 7).

Hundreds of miRNA genes are predicted to be
present in mammals, with each miRNA
apparently regulating multiple mRNAs, and
multiple miRNAs regulating each mRNA
(Refs 8, 9, 10). miRNAs are proposed to be
involved in regulating at least a third of all
genes within the human genome (Ref. 11)
although, of the hundreds of miRNAs
identified to date, the biological function(s) of
only very few has been elucidated (Ref. 12).

miRNA discovery
ThefirstmiRNA,lin-4,wasidentifiedin1993during
a genetic screen for mutants that disrupt
developmental timing in Caenorhabditis elegans
(Ref. 13). The lin-4 gene was shown to produce a
pair of small RNAs of approximately 61 and 22
nucleotides in length, with the larger being the
precursor of the smaller. Both RNAs contained
sequences complementary to sites in the 30 UTR
of lin-14 mRNA, suggesting that lin-4 regulates
lin-14 translation by an antisense RNA–RNA
interaction (Refs 14, 15). A second C. elegans
miRNA, let-7, was discovered in 2000 (Ref. 16);
let-7 is also involved in developmental timing
and represses expression of the lin-41 and hbl-1
mRNAs (Refs 17, 18, 19). let-7 and lin-41 are
phylogenetically conserved among a wide variety
of multicellular organisms, indicating that these
small RNAs could represent a general mechanism
for post-transcriptional regulation (Ref. 4).

Since these initial discoveries, many
miRNAs have been identified in single-celled
and multicellular organisms, including plant and
mammalian cells (a database of known
and predicted endogenous miRNAs is available
at http://www.sanger.ac.uk/Software/Rfam/
mirna). Although the exact number of miRNA
genes in the human genome has yet to be
determined, current estimates range to
approximately 800 (http://microrna.sanger.ac.

uk/sequences/). It is thought that many new
miRNA genes may have evolved through
duplication and mutation, with the number of
gene duplications possibly correlating with the
level of complexity of the organism (Refs 11, 20).
Furthermore, RNA editing (i.e. site-specific
modification of an RNA sequence to yield a
product differing from that encoded by the
DNA template) has been reported in at least 6%
of human miRNAs, which may further increase
the diversity of miRNAs and their targets (Ref. 21).

miRNA biogenesis
Mammalian miRNA genes are generally
transcribed by RNA polymerase (pol) II (Ref. 22).
However, recent reports show that human
miRNAs mir-515-1, mir-517a, mir-517c and mir-
519a-1 of the C19MC loci are transcribed by
RNA pol III (Ref. 23), and bioinformatic analysis
suggests that miRNA sequences containing
upstream Alu, tRNA and mammalian-wide
interspersed repeat (MWIR) sequences may also
be transcribed by RNA pol III (Ref. 23). These
transcripts are subsequently capped,
polyadenylated and spliced, generating primary
miRNA transcripts (pri-miRNAs) (Ref. 24). The
pri-miRNAs contain hairpin-loop domains from
which mature miRNAs, contained within one
arm of the hairpin-loop, are produced. In a
limited number of cases a mature miRNA can be
produced from either arm of the hairpin-loop; in
these events the miRNAs can be named in
different ways – for example, mir-458-3p and
mir-458-5p, or mir-202 and mir-202* (with the
less predominantly expressed miRNA
designated by the asterisk) (Ref. 4).

Pri-miRNAs are cleaved by the ‘microprocessor
complex’, which comprises the double-stranded-
RNA-specific RNase-III–type endonuclease
Drosha (RNASEN) and its cofactor DGCR8
(Refs 25, 26, 27) (Fig. 1). DGCR8 apparently
functions to recognise the hairpin-loop of pri-
miRNAs and to orientate the catalytic RNase III
domain of Drosha to ensure correct cleavage,
which releases hairpin-shaped precursor
miRNAs (pre-miRNAs) of approximately 70
nucleotides in length (Ref. 28) (Fig. 1). Cleavage
by Drosha introduces staggered cuts on each
side of the RNA helix stem, resulting in a 50

phosphate and a two-nucleotide overhang at the
30 end (Ref. 28). In flies and nematodes, several
functional miRNAs have been discovered that
bypass the general biogenesis pathway. These
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miRNAs, known as ‘mirtrons’, are generated from
spliced intronic sequences and have similar
structural characteristics to pre-miRNAs; they
enter the traditional miRNA biogenesis pathway
at this stage, bypassing Drosha-mediated
cleavage (Ref. 29).

Translocation of pre-miRNAs across the nuclear
envelope to the cytoplasm is facilitated by the
nuclear transport protein exportin-5 (Fig. 1),
which recognises the two-nucleotide 30

overhangs on the pre-miRNA hairpin.
Upon arrival in the cytoplasm, pre-miRNAs are
cleaved by a second double-stranded-RNA-
specific RNAse-III-type endonuclease, Dicer
(DICER1) (Fig. 1), which acts in conjunction with
a double-stranded-RNA-binding protein partner,
transactivation-responsive RNA-binding protein
(TRBP/TARBP2P) (Refs 30, 31, 32). In human
cells, TRBP recruits argonaute protein (Ago2/
EIF2C2); together Dicer, TRBP and Ago2 form
the miRNA RISC loading complex (miRLC; RISC
stands for ‘RNA-induced silencing complex’)
(Refs 33, 34). Cleavage of the pre-miRNA by
Dicer produces an approximately 22 nucleotide
double-stranded miRNA duplex – one strand of

Figure 1. miRNA biogenesis and target mRNA
regulation. Primary microRNA (pri-miRNA)
generated from transcription in the nucleus is
cleaved by Drosha (in conjunction with DGCR8) to
generate precursor miRNA (pre-miRNA), which is
translocated across the nuclear membrane by the
action of exportin 5. In the cytoplasm, pre-miRNA
is cleaved by Dicer with cofactor TRBP
(transactivation-responsive RNA-binding protein)
and argonaute protein (Ago), which together make
up the complex miRLC [miRNA RISC (RNA-
induced silencing complex) loading complex] to
produce a double-stranded miRNA duplex. This is
then unwound by the helicase armitage (not
shown), releasing single-stranded mature miRNA.
Mature miRNA becomes assembled into miRNPs
(miRNA-containing ribonucleoprotein particles),
which always include an argonaute protein. A
number of other proteins may be – but are not
always – involved in miRNP function; these
include gemin3, gemin4, vasa intronic gene
product (VIG), fragile-X-related protein (dFXR),
tudor-SN, fragile X mental retardation protein
(FMRP) and survival of motor neuron protein
(SMN). miRNA guides miRNP to its mRNA target
and, depending on the level of complementarity,
can initiate cleavage or translational repression of
mRNA target (see Fig. 2).

miRNA biogenesis and target mRNA
regulation 
Expert Reviews in Molecular Medicine
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which will become the mature miRNA. The duplex
is then unwound by the DEAD-box helicase
armitage, releasing the single-stranded mature
miRNA (Refs 35, 36).

The Ago2-bound mature miRNA then becomes
assembled into effector complexes termed miRNA-
containing ribonucleoprotein particles (miRNPs)
(Ref. 37) (Fig. 1). Several forms of miRNPs exist
that differ in size and composition, but each
form of miRNP contains a member of the
argonaute protein family. The major function of
miRNAs is to guide the miRNP complex to its
target mRNA, where its associated argonaute
protein mediates the effect (Ref. 38). Several
other miRNP components have been identified,
including gemin3 (DDX20), gemin4, vasa intronic
gene product (VIG), fragile-X-related protein
(dFXR), and the tudor staphylococcal-nuclease-
domain-containing protein (tudor-SN) (Refs 39,
40). Gemin3 is a putative DEAD-box RNA
helicase, which may function in the unwinding
of the mRNA target (Ref. 35), but the precise role
of the other proteins in RNA-silencing events
remains unclear. Although miRNAs function
primarily in the cytoplasm, one miRNA, mir-29b
has been found to localise in the nucleus; this is
likely due to a hexanucleotide terminal motif in
the 30 region that directs the mature miRNA to
be imported back into the nucleus after it is
processed in the cytoplasm (Ref. 41).

Mechanism(s) of miRNA action
In mammals, miRNAs usually exhibit partial
complementarity with their mRNA targets;
perfect or near-perfect base pairing is quite rare in
these organisms, but is predominantly found in
plant miRNAs. Partial complementarity of
miRNA to mRNA usually leads to translational
inhibition (Ref. 42), although animal miRNAs can
also induce target degradation despite the lack of
perfect complementarity (Refs 43, 44, 45). Several
proposed models exist for the mechanism of
translational repression, including miRNAs
repressing translation at both pre-initiation and
post-initiation stages (Fig. 2), and effects on
mRNA stability (decapping and deadenylation)
and compartmentalisation into translationally
repressive sites (Fig. 2); it still remains to be
deciphered which of these model mechanisms are
cause and consequence of translational repression.

miRNAs affecting initiation steps only affect cap-
dependent translation, possibly through m7G cap
recognition (Refs 46, 47, 48, 49, 50). Argonaute

proteins contain structural similarities to the
cap-binding protein eIF4E, and thus it has been
suggested that translational repression may
occur due to competition between argonaute and
eIF4E for binding to the cap structure (Ref. 51)
(Fig. 2a). Argonaute proteins are also thought to
recruit eIF6, which binds to the large ribosomal
subunit, preventing binding of the small subunit
and thus inhibiting mRNA translation (Ref. 52)
(Fig. 2a).

Much evidence also exists for post-initiation
mechanisms of repression, which affect both
cap-dependent and cap-independent translation
(Ref. 53). Polysome profile experiments indicate
that, under conditions of translational
repression, target mRNAs are fully loaded with
ribosomes (Refs 15, 54), a number of which are
engaged in active translation (Ref. 53),
suggesting that translation initiation and
elongation phases are not compromised. Two
possible theories were suggested to explain
these findings. The ribosome ‘drop-off’ theory
suggests that ribosomes engaged in translation
of miRNA-associated mRNAs are prone to
terminate translation prematurely (Fig. 2b).
Alternatively, association of active ribosomes
with repressed mRNAs could also be explained
by the ability of miRNP complex to recruit
proteolytic enzymes to degrade the nascent
polypeptide as it emerges from the ribosome
(Ref. 15) (Fig. 2b). Conflicting evidence exists on
the role of proteolytic enzymes in miRNA
function, as targeting of reporter proteins and
the use of proteinase inhibitors have shown no
effect on translational repression (Refs 50, 53).

miRNAs are apparently also involved in
regulating mRNA stability and induction of
decay of repressed mRNA targets. Argonaute
proteins, miRNAs and their repressed target
mRNAs have recently been shown to be
compartmentalised in cytoplasmic foci called
P-bodies (Refs 50, 55, 56, 57, 58, 59). These are
sites of translational repression and mRNA
decay; they are rich in factors associated with
these processes, and are lacking in ribosomes or
any other factors associated with translation
initiation (Ref. 60). It is proposed that P-body
proteins may participate in the formation of a
repressive complex on the target mRNA, which
could eventually lead to mRNA aggregation into
P-bodies (Ref. 61). Within P-bodies, miRNA/
mRNA-bound argonaute protein recruits GW182
protein (TNRC6A), which subsequently recruits
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deadenylating enzyme CCR4–NOT1 (CNOT1),
and this is followed by mRNA decapping by
DCP1–DCP2 enzyme – thereby affecting
stability of repressed mRNA. Repressed mRNAs

are then degraded by 50 to 30 exonuclease
activity of XRN1 (50-exoribonuclease 1) (Refs 43,
55, 57, 62, 63) (Fig. 2c). In addition to facilitating
mRNA degradation, P-bodies may function as

Proposed mechanisms of miRNA action
Expert Reviews in Molecular Medicine © 2008 Cambridge University Press
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Figure 2. Proposed mechanisms of miRNA action. MicroRNAs (miRNAs) can inhibit translation at pre- and
post-initiation stages. (a) At pre-initiation stages, the miRNP complex may affect m7G-cap-dependent
translation through competition of the argonaute protein with the eIF4G initiation complex for binding to the
cap structure; argonaute proteins also recruit eIF6, which prevents large ribosomal subunit binding to the
small subunit. (b) At postinitiation stages, miRNPs may cause ribosomes to terminate translation
prematurely, generating truncated polypeptides, or recruit proteolytic enzymes that degrade the polypeptide
chain as it emerges from the ribosome. Repressed mRNAs arising from these models can then be
transported to P-bodies for storage or degradation: the miRNP complex recruits GW182 protein; the latter
subsequently recruits deadenylase enzyme CCR4–NOT1; the mRNA is then decapped by DCP1–DCP2,
and degraded by exonuclease activity of XRN1.
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temporary storage sites for repressed mRNAs;
once protein synthesis has been stimulated,
repressed mRNAs may re-enter translation
(Ref. 64).

Although miRNAs generally negatively
regulate their target mRNAs, miRNA-associated
proteins can play a role in AU-rich element
(ARE)-mediated translational activation of
tumour necrosis factor a (Ref. 65). The miRNAs
mir-369-3 and let-7 function in the recruitment of
these proteins to the ARE sites in a sequence-
specific manner (Ref. 66). It is thought that
miRNAs function in translation activation under
the quiescence phase of the cell cycle and
translation inhibition during the proliferation
phase of the cell cycle (Ref. 67), although the
mechanisms of miRNA-mediated translation
activation remain unclear. mir-122 has also been
shown to enhance replication of hepatitis C
virus, but it is unclear whether this occurs by
similar mechanisms of ARE activation (Ref. 68).

Technologies for miRNA identification
and analysis

Both computational prediction and experimental
analysis have been used successfully to identify
and analyse miRNAs.

Computational analysis (e.g. applying MirScan
software) involves candidate miRNA prediction,
based on known structural features, followed by
experimental analysis to validate the existence of
the predicted sequence (Ref. 69). Computational
approaches have greatly contributed to miRNA
target analysis. Based on the realisation that the
‘seed’ nucleotides within the 50 region of
miRNAs are of significant functional relevance,
bioinformatics approaches have been developed
and applied to predict direct targets of specific
miRNAs, by searching for seed complementarity
in mRNA 30 UTRs (Refs 70, 71, 72, 73, 74, 75, 76,
77). As a result of the short seed sequence
(nucleotides 2–7), numerous potential mRNA
targets are generally predicted for each miRNA.
Binding studies and functional analysis are
necessary to determine true mRNA targets.

Experimental analysis involves the
identification of a small RNA sequence,
followed by bioinformatic analysis to determine
if this sequence fulfils the defined structural
characteristics of a miRNA (Refs 78, 79). De
novo identification of miRNAs generally
involves sequencing of size-fractioned cDNA
libraries. To achieve this, small RNAs

(approximately 20–28 nucleotides) are isolated
from denaturing gels and, following attachment
of 50 and 30 adapters to the RNAs, reverse-
transciptase (RT)-PCR is performed. The
resulting cDNAs are cloned to form a cDNA
library. Individual clones are subsequently
sequenced to establish the genomic origin of
the small RNA.

In addition to identifying new miRNAs, large-
scale cDNA cloning may be used to evaluate the
relative expression levels of miRNAs in a range of
specimens. However, global profiling of miRNAs
most frequently utilises microarrays (Refs 9, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91) or the
RNA-primed array-based Klenow enzyme
(RAKE) assay (Ref. 92). TaqMan low-density
microarrays (TLDAs) have proven popular for
such studies (http://www.appliedbiosystems.
com/index.cfm). Bead-based flow cytometry
assays have also been developed for miRNA
analysis, whereby beads are coupled to probes
(,100 probes) representing individual miRNAs.
Following incubation with the specimen of
interest, the beads are analysed by flow
cytometry for identification and quantification of
expressed miRNAs (Ref. 93). Methods used for
validation of results from global analysis – or
for analysis of small numbers of miRNAs –
include qRT-PCR, northern blotting, dot blotting,
RNase protection assay, and a modified invader
assay (Refs 94, 95).

The functional relevance of miRNAs may be
investigated using pre-miRNAs (Pre-miRTM

miRNA precursors) or miRNA inhibitors (Anti-
miRTM miRNA inhibitors) (see http://www.
ambion.com). Antisense technologies have also
been used successfully to regulate miRNA
levels in vitro and in vivo (Refs 96, 97, 98).
Simultaneous expression of multiple miRNAs by
RNA pol III is being investigated, as RNA pol III
can achieve higher expression levels compared
with expression driven by RNA pol II; as
miRNA-mediated mRNA silencing is dose-
dependent, this mechanism would possibly
increase the chances of producing hypomorphic
phenotypes (Ref. 99).

miRNAs in normal and pathological
conditions

miRNAs have been implicated in regulation of
cellular processes such as differentiation
(Ref. 100), proliferation, apoptosis (Ref. 101),
metabolism (Ref. 102), haematopoiesis (Ref. 103),
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cardiogenesis (Ref. 104), morphogenesis and
insulin secretion (Ref. 105), in addition to acting
in several feedback loops involved in signal
transduction pathways (Ref. 106). miRNAs are
vital for cell survival: elimination of miRNA
maturation by Dicer knockout leads to
embryonic lethality in mice (Ref. 107). miRNAs
are involved in such a wide variety of cellular
processes that it is likely their dysregulation or
abnormal expression could lead to a range of
disease states. miRNAs have already been
implicated in the pathogenesis of several human
diseases, such as neurological disorders, cancer,
and viral and metabolic diseases (Ref. 98).

Neurological disorders
Spinal muscular atrophy (SMA), a progressive
neurodegenerative disease, is caused by deletion
or loss of function mutations in the SMN
(survival of motor neuron) protein (Ref. 108).
SMN is a component of the miRNP complex that
performs the effector functions of the miRNA
pathway (Ref. 37). Fragile X syndrome is caused
by inactivation of the gene FMR1, and hence
silencing of the fragile X mental retardation
protein (FMRP), which is also associated with
miRNP complex formation (Ref. 109). These
studies indicate that disruptions in the miRNP
machinery and hence miRNA activity can lead to
disease states. Tourette syndrome is associated
with a single-nucleotide polymorphism (SNP) in
the 30 UTR of the SLITRK1 gene, which is the
binding site of mir-189; this SNP hence modifies
the interaction of mir-189 (Ref. 110). In addition,
mir-134 regulation of LIMK1 in hippocampal
neurons controls spine development and possibly
also contributes to synaptic development,
maturation and plasticity (Ref. 111); thus,
dysregulation of mir-134 could potentially lead to
complications in these processes.

Cancer
Many miRNA genes are thought to reside at
chromosomal breakpoints or fragile sites
associated with cancer (Ref. 112). The mir-15/16
cluster is located at one such site and is deleted
in the majority of B cell chronic lymphocytic
leukaemias (B-CLLs) (Ref. 113), as well as mantle
cell lymphomas and prostate cancers (Ref. 114),
suggesting that mir-15/16 may function as
tumour suppressors. Members of the let-7 family
also located at fragile sites (Ref. 112) are
frequently deleted in cancer patients, leading to

elevated levels of the oncogene product RAS
(Ref. 115). Some miRNAs have also been shown
to possess oncogenic potential; the mir-17-92
cluster, which contains six miRNAs, is located at
a chromosome site that is amplified in a range of
cancers and overexpression leads to accelerated
tumour development in mouse B cell lymphoma
models (Ref. 5). Overexpression of the individual
miRNAs from the cluster did not reveal the
same oncogenic potential, indicating that
interaction between a range of miRNAs could be
necessary for the development of disease
phenotypes. mir-155, which is elevated in
Burkitt lymphoma, also acts as an oncogene,
with overexpression in B cells leading to
development of pre-B-cell lymphomas (Ref. 116).
These putative miRNA tumour suppressors and
oncogenes represent a potential set of miRNA
therapeutic targets. Microarray profiling of
miRNAs in tumour tissues and cell lines has
identified miRNA differentially expressed in
different tumour types, indicating potential use of
tumour miRNA profiling in cancers for prediction
of developmental lineage, differentiation state,
and prognosis (Ref. 93).

Viral disease
Host mir-32 expression restricts infection of the
primate foamy virus 1 (PFV-1), with inhibition of
mir-32 leading to doubling of the PFV-1
proliferation rates in host cells (Ref. 117). PFV-1
encodes the Tas protein, which is known to be a
suppressor of RNA silencing (Ref. 117), thereby
removing the growth limitation inflicted by
mir-32 by disrupting the silencing machinery.
Many viruses encode similar suppressors of RNA
silencing – for example, the Tat protein from
human immunodeficiency virus 1 (HIV-1)
(Ref. 118) and the B2 protein from Nodamura
virus (Ref. 119).

miRNAs represent an efficient mechanism for
viruses to use to manipulate host machinery, as
they require less space on the viral genome
than alternative protein products. Viral
miRNAs can target both viral and host mRNAs
for repression. Twelve miRNAs from the
Karposi sarcoma-associated herpesvirus
(KSHV) genome expressed in cells led to the
downregulation of a number of genes including
thrombospondin 1 (THBS-1), which is a known
tumour suppressor and antiangiogenic factor. It
is thought that these KSHV miRNAs may
contribute directly to pathogenesis of KSHV by
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downregulation of THBS-1 (Ref. 120). The simian
virus 40 (SV40) encodes a miRNA that is perfectly
complementary to transcripts coding viral T
antigens, leading to their degradation (Ref. 121).
This destruction of viral T antigens aids the
virus in evading immune detection by the host.
The hepatitis C virus (HCV) enchances
replication via a novel interaction of abundantly
expressed mir-122 with the 50 UTR of the viral
genome (Ref. 68). Interferons (IFNs) are key
molecules involved in eliciting the antiviral
response once an infection has been detected
(Ref. 122). IFN-b has recently been implicated
in the activation of several miRNAs in
mammals that have antiviral properties against
HCV (Ref. 123), and treatment also leads to
reduced mir-122 expression (Ref. 123), which
limits HCV replication (Ref. 68). These studies
identify a number of different miRNAs that
could be therapeutically targeted to hinder viral
infection, aid host detection of infection, and
prevent viral manipulation of host machinery.

miRNAs relevant to diabetes
Diabetes mellitus is a metabolic disorder in which
insulin either is not secreted in sufficient amounts
from b-cells or does not efficiently stimulate its
target cells. Despite high glucose levels, cells
starve, as a result of impaired glucose entry into
cells. Current treatments for diabetes cannot
efficiently control glycaemic levels, resulting in
episodes of hyper- and hypoglycaemia
(Ref. 124), which increases the possibility of
developing secondary complications such as
retinopathy, nephropathy and neuropathy
(Ref. 125). In the search for more-targeted
molecular therapies, miRNAs implicated in
insulin secretion and diabetic complications
have recently attracted attention.

miRNAs associated with b-cell insulin
secretion
Recent experimental work has revealed a limited
number of miRNAs – including mir-375, mir-
124a and mir-9 – associated with various
subcellular events involved in glucose-stimulated
insulin secretion (GSIS) (Refs 126, 127, 128). In
addition, bioinformatic analysis has indicated
potential miRNA target sites in a range of other
mRNAs encoding proteins involved in
exocytosis – including VAMP2 (vesicle-associated
membrane protein 2), SNAP25 (synaptosomal-
associated protein 25kDa), syntaxin-1, Rab27a

(member of the RAS oncogene family),
granuphilin (SYTL4) and MyRIP (myosin VIIA
and Rab interacting protein). Some miRNAs (mir-
153, mir-1, mir-133, mir-200 and mir-34) have
predicted target sites in several of these
functionally related genes (e.g. mir-153 and mir-1
have putative target sites in VAMP2 and
SNAP25) (Ref. 129). Although the miRNA target
sites identified by bioinformatics have yet to be
experimentally validated, this gives an insight
into the potential extent of complex
networking of molecules involved in exocytosis
regulation.

mir-375
Selective cloning of small RNAs 21–23 nucleotides
in length from the b-cell line MIN-6 and the a-cell
line TC1 led to the identification of mir-375, a
miRNA specific to pancreatic islet cells. Gain-
and loss-of-function experiments on mir-375
indicated it was involved in GSIS in b-cells, with
overexpression resulting in reduced GSIS and,
conversely, knockout of expression resulting in
enhanced GSIS (Ref. 105). mir-375 apparently acts
on the later stages of exocytosis to reduce insulin
secretion.

Based on sequence information, myotrophin
has been confirmed as a target of mir-375 action
(Table 1); mir-375 mediates repression via a
single target site in the 30 UTR of the
myotrophin mRNA (Ref. 105). Myotrophin is
involved in vesicle transport in neurons and in
neurotransmitter release but its function in
pancreatic b-cells has not been clearly defined
(Refs 130, 131, 132). Myotrophin (via its three
consecutive ankyrin repeats) interacts with the
capping protein CP (also known as CapZ or b-
actinin). This myotrophin–CP interaction
inhibits CP-regulated actin polymerisation
(Ref. 133), thereby allowing access of secretory
granules to exocytotic site (Fig. 3a). Myotrophin
also acts in the nucleus as a transcription factor
to activate nuclear factor kB (NF-kB), a critical
component in maintaining GSIS in b-cells
(Refs 134, 135) (Fig. 3a). It is not yet clear
whether mir-375-induced inhibition of
myotrophin translation and the corresponding
reduction of GSIS are mediated by the CP or
NF-kB pathway, or a combination of both.
Myotrophin is also the predicted target of
repression for two other miRNAs: mir124 and
let-7b (Ref. 136). The function of let-7b in GSIS
of b-cells still remains to be established.
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More recently, knockdown of mir-375 in
zebrafish embryos has revealed a role for this
miRNA in pancreatic islet development
(Ref. 137). When morpholino oligonucleotides
were injected into one-cell-stage embryos,
resulting in a knockdown of mir-375 activity
during the first four days of development,
insulin staining showed the formation of an
islet at 24 h post fertilisation but by day 3 the
islet had fallen apart and insulin-positive cells
were scattered (Ref. 137). The original formation
of an islet at 24 h suggests that mir-375
expression is not essential in early endocrine
formation, but more so for maintenance of
tissue identity at a later stage. It has not yet
been deciphered whether this scattered islet
phenotype occurs as a result of mir-375 action
on myotrophin expression or whether other
mir-375 targets are involved.

mir-124a
Mir-124a exists in three different isoforms – mir-
124a1, 2 and 3 – encoded on chromosome 14, 3
and 2, respectively, in the mouse genome. The
isoform mir-124a2 is differentially expressed
during pancreas development, with a sixfold
upregulation at embryonic stage e18.5
compared with e14.5 (Ref. 138). e18.5 is the
critical stage for b-cell differentiation, indicating
that mir-124a2 might be significant in this process.

Using PicTar (http://pictar.bio.nyu.edu/
cgi-bin/PicTar) (Ref. 136) and miRanda (http://

www.microrna.org/mammalian/index_new.html)
(Ref. 139) bioinformatics tools, the forkhead/
winged helix transcription factor boxa2
(FOXA2) mRNA was identified as a potential
target of mir-124a (Table 1). This relationship
was subsequently confirmed by over- and
underexpression of mir-124a2 in MIN6 murine
pancreatic b-cells, using Pre-Mir and Anti-Mir
technology (Pre-miRTM miRNA precursors and
Anti-miRTM miRNA inhibitors; see http://www.
ambion.com). CREB-1 (cAMP-response-element-
binding protein), a stimulus-inducible
transcription factor, was also predicted as a
potential target of mir-124a regulation, and mir-
124a2 over- and underexpression correspond with
decreasing and increasing levels of CREB-1,
respectively (Ref. 138) (Table 1). As FOXA2 is a
target of CREB-1 regulation (Ref. 140), this
suggests that FOXA2 expression may be
regulated by mir-124a2 directly as well as
indirectly (via CREB-1) (Fig. 3b).

FOXA2 is an upstream regulatorof the homeobox
protein PDX-1 (Refs 141, 142). PDX-1 is essential for
b-cell differentiation, glucose homeostasis and
pancreas development (Refs 143, 144) (Fig. 3b),
and the human orthologue (insulin promoter
factor; IPF1) is mutated in a proportion of
early-onset type 2 diabetic patients (Ref. 145).
Manipulation of FOXA2 expression, by
overexpression or inhibition of mir-124a2,
corresponds with a decrease and increase in PDX-1
mRNA levels, respectively (Ref. 138). PDX-1

Table 1. miRNAs implicated in b-cell insulin secretion and diabetic complications,
and their mRNA targets

Process/condition miRNAa Target mRNA Ref.

b-Cell insulin secretion mir-375 Myotrophin 105

mir-124a FOXA2
CREB-1
Rab27A

138
138
149

mir-9 OC2 152

Diabetic kidney glomeruli mir-192 SIP-1 166

Diabetic heart mir-133 HERG 175
aThese miRNAs represent potential targets of therapeutic intervention in the treatment of diabetes and related
complications.
Abbreviations: CREB-1, cAMP-response-element-binding protein 1; FOXA2, forkhead/winged helix
transcription factor boxa 2; HERG, human ether-a-go-go related gene; miRNA, microRNA; OC2, onecut 2; SIP-1,
SMAD-interacting protein 1.
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regulates expression of the insulin gene;
consequently, overexpression and inhibition of
mir-124a2 leads to a decrease and increase in
insulin mRNA levels, respectively (Ref. 138).

Further downstream targets of FOXA2
regulation are the KATP channel subunits SUR1

(sulphonylurea receptor 1) and KIR6.2 (inward
rectifier Kþ channel member 6.2) (Ref. 146),
which are critical for regulated insulin release;
mutations in either of these genes can lead to
persistent hyperinsulinaemic hypoglycaemia
of infancy (PHHI) in humans (Ref. 147).

Co-ordinated regulation of insulin exocytosis by miRNAs
Expert Reviews in Molecular Medicine © 2008 Cambridge University Press

mir-124a
let-7b

mir-375

Actin
polymerisation

Insulin secretion

Myotrophin

Insulin secretory granuleNucleus

NF-κB

Capping protein Cell membrane

MyotrophinMyotrophin

Rab27a
Insulin
exocytosis

Insulin expression

β-Cell differentiation
Pancreas development
Glucose homeostasis

CREB1
mir-124a

FOXA2 KIR6.2
SUR1

PDX-1

a   Possible miRNA inhibition of insulin secretion via myotrophin

b   Possible mir-124a involvement in glucose homeostasis

Figure 3. Co-ordinated regulation of insulin exocytosis by miRNAs. (See next page for legend.)
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Overexpression of mir-124a2 leads to increased
Ca2þ levels within the cell (Ref. 138).
Knockdown of the SUR1 and KIR6.2 subunits
results in impaired KATP channels, causing a
build-up of Kþ ions within the cell, which
stimulates opening of voltage-gated calcium
channels, thereby allowing Ca2þ ions to enter
the cell (increased Ca2þ ions usually stimulate
exocytosis). Thus, reduced expression of KATP

channel subunits could explain the increase in
cytosolic free Ca2þ concentrations following
transfection with mir-124a2. FOXA2 deficiency
in mice leads to loss of GSIS and excessive
insulin release in response to amino acid
stimuli (Ref. 146). However, mir-124a2-induced
reduction in FOXA2 levels has not shown as
dramatic an effect on GSIS as seen in the
FOXA2-null mouse (Ref. 138).

Rab27A, which is also involved in GSIS
(Ref. 148), has recently been shown to be the
target of mir-124a action via a binding site in
the 30 UTR of Rab27A mRNA (Ref. 149). Mir-
124a also indirectly regulates expression of
several other components of the exocytotic
machinery in MIN6-B1 cells, including
SNAP25, Rab3A, synapsin 1A (SYN1) and
NOC2 (nucleolar complex associated 2)
(Ref. 149). Overexpression of mir-124a in these
cells leads to reduced GSIS. In the same study,
mir-96 was identified as a regulator of
granuphillin and NOC2, and its expression in
MIN6-B1 cells leads to a reduction in
stimulated insulin secretion (Ref. 149).

mir-9
Mir-9 is expressed predominately in neurons in
both human and mouse models (Refs 150, 151),
and to a lesser extent in pancreatic b-cells in rat
and mouse models (Ref. 152). Onecut2
transcription factor (OC2), which negatively

regulates granuphilin (also known as SLP4/
SYTL4) expression, has been identified as a
mir-9 target (Table 1). A basal level of mir-9
expression is needed to maintain optimum
onecut2 expression levels for normal b-cell
function (Ref. 152), but mir-9 overexpression in
rat INS-1E b-cells leads to a reduced GSIS in
these cells (Ref. 152).

Granuphilin associates with insulin secretory
granules (Ref. 153) and promotes targeting of
these granules to the plasma membrane
(Ref. 154); however, it is a negative modulator
of exocytosis as it imposes a constraint to
inhibit fusion until the correct signals are
received by the cell (Ref. 154). Overexpression
of mir-9 leads to increased levels of granuphilin
expression due to the removal of the repressive
effects of onecut2 on the granuphilin promoter
(Ref. 152), and hence reduced GSIS is observed
as a result of its negative effects on exocytosis.
Granuphilin-null mice also show impaired
GSIS, with reduced quantity of insulin granules
docked to the b-cell membrane, and conversely
exhibit increased insulin exocytosis in response
to stimulus (Ref. 155).

Binding partners of granuphilin include the
GTP-binding proteins Rab3/Rab27, the SNARE-
binding protein Munc-18 and the tSNARE
protein syntaxin-1, which are involved in
exocytosis of secretory granules in pancreatic
b-cells (Refs 152, 156, 157). mir-9-induced
reduction of exocytosis does not occur through
manipulation of Rab3, Rab27 and SNARE
proteins such as SNAP25, VAMP-2 and
syntaxin-1, as the expression levels of these key
exocytosis proteins are unchanged in mir-9-
transfected cells relative to control cells
(Ref. 152). However, it is as yet unknown whether
the mir-9-mediated reduction of secretagogue-
stimulated exocytosis via granuphilin occurs

Figure 3. Co-ordinated regulation of insulin exocytosis by miRNAs. (Legend; see previous page for figure.)
(a) Possible microRNA (miRNA) inhibition of insulin secretion via myotrophin. Overexpression of the myotrophin-
targeting miRNA mir-375 results in reduced glucose-stimulated insulin secretion, which can be explained through
cytoplasmic and/or nuclear actions of myotrophin. Myotrophin interacts with capping protein to inhibit actin
polymerisation. Inhibition of actin polymerisation allows access of insulin granules to the cell membrane for
exocytosis. In addition, myotrophin interacts with transcription factor NF-kB, which controls expression of
several genes critical for glucose-stimulated insulin secretion. Myotrophin also contains putative binding sites for
the miRNAs let-7b and mir-124a. (b) Possible mir-124a involvement in glucose homeostasis. Mir-124a targets
Rab27a and also FOXA2 (directly and indirectly via CREB1). Myotrophin has also been identified as a potential
mir-124a target. FOXA2 may influence several targets relevant to diabetes via PDX-1, including insulin mRNA
levels and possibly also KATP channel subunits KIR6.2 and SUR1 (involved in regulated insulin release). It also
plays a role in b-cell differentiation, pancreas development and glucose homeostasis.
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through downstream manipulation of Munc-18
activity. The effect of granuphilin on Munc-18 is
not alone sufficient to mediate such a profound
knockdown of stimulus-induced exocytosis
(Ref. 156), suggesting that granuphilin and
possibly mir-9 have additional targets that
participate in this process.

miRNAs associated with diabetic kidney
glomeruli
Diabetic nephropathy – generally defined as
urinary albumin excretion of .300 mg per 24 h
or abnormal renal function characterised by
abnormality in serum creatinine, creatinine
clearance, or glomerular filtration rate – is the
most common cause of kidney failure in patients
with diabetes. The abnormal renal function is
thought to arise largely from accumulation of
extracellular matrix (ECM) proteins in the
mesangial cells, hypertrophy of glomerular and
tubular elements, and thickening of the
glomerular and tubular basement membranes
(Refs 158, 159).

ECM proteins such as collagen 1a1 and 1a2 are
positively regulated by transforming growth
factor b (TGF-b), which is upregulated in
mesangial cells under diabetic conditions
(Refs 160, 161). TGF-b is known to upregulate
ECM proteins via SMAD transcription factors
and mitogen-activated protein kinases (MAPKs)
(Refs 162, 163, 164, 165); in addition, recent
work has revealed TGF-b downregulates the
E-box repressor proteins dEF1 and SMAD-
interacting protein 1 (SIP1), which mediate
repression of collagen expression at its E-box
element (Ref. 166). dEF1 can also repress SMAD
proteins (Ref. 167).

Several miRNAs, including mir-192, -194, -204,
-215 and -216, are preferentially expressed in the
kidney, as compared with other tissues (Ref. 85).
Using computational miRNA target predictions
from miRNA databases (http://cbio.mskcc.org;
http://microrna.sanger.ac.uk/index.shtml) the
E-box repressor SIP1 was shown to contain a
potential target site for mir-192 and mir-215
regulation.

Using a luciferase reporter system, SIP1 was
validated as a target of mir-192 regulation
(Table 1), but not of mir-215. TGF-b treatment
induces mir-192 expression. TGF-b-induced
mir-192 expression or mir-192 transfection can
decrease SIP1 levels, while mir-192 inhibitor
increases SIP1 levels (Ref. 166). The mechanism

of TGF-b regulation of mir-192 expression is not
completely understood. The mir-192 promoter
contains a binding site for the proto-oncogene
ETS-1 (Ref. 85), which is also induced by TGF-b
expression (Ref. 168), representing a possible
mechanism of TGF-b regulation of mir-192
expression.

mir-192 overexpression leads to repression of
translation of its target SIP1, thereby increasing
levels of collagen expression. Repression of dEF1
using short hairpin RNA (shRNA; for
stable transfection of siRNA) shows similar
effects, resulting in increased levels of collagen
expression; however, double transfection of a
mir-192 mimic and dEF1 shRNA shows a much
larger increase in collagen expression than either
achieved separately, suggesting that these two
mechanisms act synergistically in the control of
collagen expression (Ref. 166).

In vivo analysis of type1 and type2 diabetic mice
showed elevated levels of mir-192, TGF-b and
collagen 1a2 in the renal glomeruli (Ref. 166),
suggesting the possible involvement of mir-192-
mediated collagen expression in the pathogenesis
of diabetic nephropathy, or other diabetic
complications where TGF-b levels are raised.

miRNAs associated with diabetic heart
Cardiovascular disease is the principal cause of
death in more than 60% of diabetic cases, with
an annual mortality of approximately 5.4%,
thereby decreasing life expectancy by up to 10
years (Refs 169, 170). For diabetic patients, the
most prominent cardiac electrical disturbance is
an abnormal QT interval, which is associated
with increased risk of sudden cardiac death
(Refs 171, 172). QT interval is the total duration
for ventricular depolarisation and repolarisation
of cardiac myocytes, which is controlled by the
flow of inward and outward ion currents.
Increasing inward currents and/or decreasing
outward currents lead to prolonged QT interval.
The outward currents occur via a number of Kþ

channels.
Human ether-a-go-go related gene (HERG)

encodes one of these channels – the rapid
delayed rectifier Kþ current channel (IKr). HERG
is downregulated in diabetic hearts, thereby
contributing to slowed repolarisation and
prolonged QT interval (Refs 173, 174). HERG
expression is downregulated at the post-
transcriptional level: HERG mRNA levels remain
constant, while HERG protein levels are reduced
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by 60% in diabetic heart as compared with
nondiabetic/control heart (Refs 173, 174, 175).

mir-1 and mir-133 are specifically expressed in
adult cardiac and skeletal muscle tissues, and
upregulated in rabbit diabetic heart tissue and
also in ventricular samples from human
diabetic patients (Refs 104, 176). Using a
luciferase reporter plasmid and western
blotting, HERG mRNA was shown to be a
target of mir-133 action (Table 1), while mir-1
had no effect on HERG expression (Ref. 175).
IKr, the channel for rapid delayed rectifier Kþ

current, was shown to be underexpressed in
diabetic hearts and healthy hearts transfected
with mir-133, while transfection of a mir-133
inhibitor AMO-133 partially rectified the
depression of IKr in diabetic hearts, and
completely rectified expression of IKr in mir-
133-transfected healthy hearts (Ref. 175).

Serum response factor (SRF) is a cardiac
transcription factor highly overexpressed in
diabetic hearts (Ref. 175). SRF is essential for
expression of mir-1 and mir-133 (Refs 104, 176).
SRF siRNA or the SRF inhibitor distamycin
reduced expression of mir-1 and mir-133 in
diabetic cardiac myocytes. Transfection of SRF
siRNA into cardiac myocytes of diabetic hearts
resulted in increased levels of IKr expression
(Ref. 175). It still remains to be seen whether use
of AMO-133 or SRF siRNA in vivo increases IKr

expression sufficiently to correct or reduce
prolonged QT interval in diabetic subjects.

mir-133 is also known to repress expression of
KCNQ1, which is involved in the formation of the
slow delayed rectifier Kþ current channel (IKs)
(Ref. 177), although it is currently unknown
whether this channel plays a role in the
development of long QT syndrome in diabetic
patients.

Clinical implications/applications
Until recently, miRNAs had not been considered as
classical therapeutic targets, as they do not code for
proteins. Initial studies aimed at exploiting
miRNAs as a form of therapy have shown
promising results. Following intravenous
injection of modified antisense oligonucleotides
(termed antagomirs) into mice, in vivo inhibition
of four miRNAs – mir-16, mir-122, mir-192 and
mir-194 – has been successfully demonstrated
(Ref. 96). This approach resulted not only in
blockage of target miRNAs, but also in their
degradation in most organs analysed, including

liver, kidney, heart, lung, intestine, bone marrow,
muscle, skin, fat, ovaries and adrenals. Lack of
effect observed in brain is possibly due to
restricted diffusion of charged nucleic acids
across the blood–brain barrier. Alternative
approaches to targeting miRNAs therapeutically
by inhibiting Drosha, Dicer or other miRNA
pathway components are being investigated.
Conversely, where reduced miRNA expressed is
associated with a disease phenotype and
increased expression of relevant miRNA could
be of potential therapeutic relevance to rescue
disease phenotype, introduction of miRNA
mimics is being investigated. However, suitable
expression vectors have yet to be identified for
the safe delivery and maintenance of such effects
long-term (Ref. 178).

Research in progress and outstanding
research questions

The importance of miRNAs in normal and
pathological conditions is still being realised.
Recent studies have clearly indicated an
association between dysregulated expression of
these short RNAs in regulated and defective
insulin secretion from b-cells and in diabetic
kidney and heart disease. Recently,
overexpression of a specific miRNA (mir-29) –
which is upregulated in diabetic rats – has been
found to have a functional role in insulin
resistance (Ref. 179) and, furthermore, analysis
of murine pancreas development has indicated a
unique miRNA profile to be necessary during
pancreas development for generation of normal
b-cells (Ref. 180). So, while studies associating
miRNAs with diabetes are so far limited in
numbers, they suggest important roles for
miRNAs as potential biomarkers and possibly
therapeutic targets. More extensive studies
investigating the expression and functional
relevance of miRNAs in both type 1 and type 2
diabetes will undoubtedly increase our
understanding of these complex conditions and
will hopefully aid in the identification of novel
therapeutic targets and interventions.
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Further reading, resources and contacts

Websites of the Computational Biology Center of the Memorial Sloan-Kettering Cancer Center, New York, USA,
provide a range of bioinformatic tools, including a searchable database for predicted miRNA targets and
expression:

http://cbio.mskcc.org

http://www.microrna.org/microrna/home.do

MiRBase of the Wellcome Trust Sanger Institute, Cambridge, UK, provides data previously accessible from the
miRNA Registry and is a searchable database of published miRNA sequences and annotation. The miRBase
Target database is a new resource at this site for predicted miRNA targets in animals:

http://microrna.sanger.ac.uk/sequences/

The Ambion/Applied Biosystems website provides an excellent miRNA resource page, detailing miRNA
processing, function, expression and targets. Ambion/Applied Biosystems also provide all reagents
required for miRNA isolation, miRNA RT-PCR, and miRNA functional analysis, by use of Pre-mirTM

miRNA precusors or Anti-mirTM miRNA inhibitors:

http://www.ambion.com

Features associated with this article

Figures
Figure 1. miRNA biogenesis and target mRNA regulation.
Figure 2. Proposed mechanisms of miRNA action.
Figure 3. Co-ordinated regulation of insulin exocytosis by miRNAs.

Table
Table 1. miRNAs implicated in b-cell insulin secretion and diabetic complications, and their mRNA targets.
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