300 research outputs found

    Carlene Allen Raper 1925-2019

    Get PDF
    The field of fungal genetics and biology lost one of its founding anchors with the death of Carlene Raper on September 5, 201

    A recommendation for naming proteins in Neurospora

    Get PDF
    The issue of gene product names is important in as much as it promotes consistency within the literature and promotes accessibility of the Neurospora literature to readers more familiar with other organisms

    Phosphorylation of the Neurospora Clock Protein FREQUENCY Determines its Degradation Rate and Strongly Influences the Period Length of the Circadian Clock

    Get PDF
    Under free running conditions, FREQUENCY (FRQ) protein, a central component of the Neurospora circadian clock, is progressively phosphorylated, becoming highly phosphorylated before its degradation late in the circadian day. To understand the biological function of FRQ phosphorylation, kinase inhibitors were used to block FRQ phosphorylation in vivo and the effects on FRQ and the clock observed. 6-dimethylaminopurine (a general kinase inhibitor) is able to block FRQ phosphorylation in vivo, reducing the rate of phosphorylation and the degradation of FRQ and lengthening the period of the clock in a dose-dependent manner. To confirm the role of FRQ phosphorylation in this clock effect, phosphorylation sites in FRQ were identified by systematic mutagenesis of the FRQ ORF. The mutation of one phosphorylation site at Ser-513 leads to a dramatic reduction of the rate of FRQ degradation and a very long period (\u3e30 hr) of the clock. Taken together, these data strongly suggest that FRQ phosphorylation triggers its degradation, and the degradation rate of FRQ is a major determining factor for the period length of the Neurospora circadian clock

    The Clock affecting 1 mutation of Neurospora is a recurrence of the frq\u3csup\u3e7\u3c/sup\u3e mutation7

    Get PDF
    The clock affecting-1 (cla-1) mutation of Neurospora crassa increases the period and decreases temperature compensation of the circadian rhythm, and was thought to define an uncloned gene with a possible role in the Neurospora clock. This defect, thought to be due to a translocation, was associated with a slow growth rate and a period of about 27 h at 25cla-1 and found the growth rate and period defects to be due to linked independent mutations. The translocation was not the cause of the long period. The csp-1 mutation, present in the original cla-1 strain, had a period shortening effect, thus cla-1 strains lacking csp-1 had a period length similar to that of frequency7 (frq7). The cla-1 period defect mapped to the frq locus, and sequencing of frq revealed cla-1 to be a re-isolation of frq7

    Temperature-Sensitive and Circadian Oscillators of Neurospora crassa Share Components

    Get PDF
    In Neurospora crassa, the interactions between products of the frequency (frq), frequency-interacting RNA helicase (frh), white collar-1 (wc-1), and white collar-2 (wc-2) genes establish a molecular circadian clockwork, called the FRQ-WC-Oscillator (FWO), which is required for the generation of molecular and overt circadian rhythmicity. In strains carrying nonfunctional frq alleles, circadian rhythms in asexual spore development (conidiation) are abolished in constant conditions, yet conidiation remains rhythmic in temperature cycles. Certain characteristics of these temperature-synchronized rhythms have been attributed to the activity of a FRQ-less oscillator (FLO). The molecular components of this FLO are as yet unknown. To test whether the FLO depends on other circadian clock components, we created a strain that carries deletions in the frq, wc-1, wc-2, and vivid (vvd) genes. Conidiation in this ΔFWO strain was still synchronized to cyclic temperature programs, but temperature-induced rhythmicity was distinct from that seen in single frq knockout strains. These results and other evidence presented indicate that components of the FWO are part of the temperature-induced FLO

    Functional Characterization of MAT1-1-Specific Mating-Type Genes in the Homothallic Ascomycete Sordaria Macrospora Provides New Insights into Essential and Nonessential Sexual Regulators

    Get PDF
    Mating-type genes in fungi encode regulators of mating and sexual development. Heterothallic ascomycete species require different sets of mating-type genes to control nonself-recognition and mating of compatible partners of different mating types. Homothallic (self-fertile) species also carry mating-type genes in their genome that are essential for sexual development. To analyze the molecular basis of homothallism and the role of mating-type genes during fruiting-body development, we deleted each of the three genes, SmtA-1 (MAT1-1-1), SmtA-2 (MAT1-1-2), and SmtA-3 (MAT1-1-3), contained in the MAT1-1 part of the mating-type locus of the homothallic ascomycete species Sordaria macrospora. Phenotypic analysis of deletion mutants revealed that the PPF domain protein-encoding gene SmtA-2 is essential for sexual reproduction, whereas the alpha domain protein-encoding genes SmtA-1 and SmtA-3 play no role in fruiting-body development. By means of cross-species microarray analysis using Neurospora crassa oligonucleotide microarrays hybridized with S. macrospora targets and quantitative real-time PCR, we identified genes expressed under the control of SmtA-1 and SmtA-2. Both genes are involved in the regulation of gene expression, including that of pheromone genes

    How Temperature Changes Reset a Circadian Oscillator

    Get PDF
    Circadian rhythms control many physiological activities. The environmental entrainment of rhythms involves the immediate responses of clock components. Levels of the clock protein FRQ were measured in Neurospora at various temperatures; at higher temperatures, the amount of FRQ oscillated around higher levels. Absolute FRQ amounts thus identified different times at different temperatures, so temperature shifts corresponded to shifts in clock time without immediate synthesis or turnover of components. Moderate temperature changes could dominate light-to-dark shifts in the influence of circadian timing. Temperature regulation of clock components could explain temperature resetting of rhythms and how single transitions can initiate rhythmicity from characteristic circadian phases

    Alternative Use of DNA Binding Domains by the Neurospora White Collar Complex Dictates Circadian Regulation and Light Responses

    Get PDF
    In the Neurospora circadian system, the White Collar complex (WCC) of WC-1 and WC-2 drives transcription of the circadian pacemaker gene frequency (frq), whose gene product, FRQ, as a part of the FRQ-FRH complex (FFC), inhibits its own expression. The WCC is also the principal Neurospora photoreceptor; WCC-mediated light induction of frq resets the clock, and all acute light induction is triggered by WCC binding to promoters of light-induced genes. However, not all acutely light-induced genes are also clock regulated, and conversely, not all clock-regulated direct targets of WCC are light induced; the structural determinants governing the shift from WCC\u27s dark circadian role to its light activation role are poorly described. We report that the DBD region (named for being defective in binding DNA), a basic region in WC-1 proximal to the DNA-binding zinc finger (ZnF) whose function was previously ascribed to nuclear localization, instead plays multiple essential roles assisting in DNA binding and mediating interactions with the FFC. DNA binding for light induction by the WCC requires only WC-2, whereas DNA binding for circadian functions requires WC-2 as well as the ZnF and DBD motif of WC-1. The data suggest a means by which alterations in the tertiary and quaternary structures of the WCC can lead to its distinct functions in the dark and in the light
    • …
    corecore