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How Temperature Changes

Reset a Circadian Oscillator
Yi Liu, Martha Merrow,* Jennifer J. Loros, Jay C. Dunlap†

Circadian rhythms control many physiological activities. The environmental
entrainment of rhythms involves the immediate responses of clock compo-
nents. Levels of the clock protein FRQ were measured in Neurospora at various
temperatures; at higher temperatures, the amount of FRQ oscillated around
higher levels. Absolute FRQ amounts thus identified different times at different
temperatures, so temperature shifts corresponded to shifts in clock time with-
out immediate synthesis or turnover of components. Moderate temperature
changes could dominate light-to-dark shifts in the influence of circadian timing.
Temperature regulation of clock components could explain temperature re-
setting of rhythms and how single transitions can initiate rhythmicity from
characteristic circadian phases.

Common elements are emerging in the mo-

lecular mechanisms of circadian rhythms and

in the ways that these mechanisms respond to

environmental cues, including light and tem-

perature (1–6 ). Phase resetting by light is

understood in terms of rapid light-induced

responses of central clock components. How-

ever, a description of how small, naturally

occurring temperature cycles can reset a

clock is lacking.

The universality and the sensitivity of

temperature resetting indicate that tempera-

ture is a major factor in the entrainment of

clocks, one which is commonly regarded as

being secondary to light in importance as a

zeitgeber for entrainment (7). Temperature

shifts mimic the effects of light or darkness in

most organisms (5, 8–14), with high temper-

ature eliciting responses that are similar to

responses to light and low-temperature dark-

ness. Thus, light and temperature cycles re-

inforce each other. Circadian clocks can be

extremely sensitive to temperature changes;

in insects, lizards, and fungi, clocks can be

entrained by temperature cycles that oscillate

only 1° to 2°C (14–16 ). Temperature effects

on the Neurospora circadian system, in par-

ticular, are well described (9, 10, 16 ), as is

the general pattern in which molecular com-

ponents are assembled, forming a feedback

loop that is central to the system (1, 3, 17,

18). We have sought to understand how a

day-phase oscillator that is characteristic of

many eukaryotes could be reset by tempera-

ture steps. Here we describe a mechanism for

temperature resetting of the Neurospora

clock that could be generalizable to other

systems and show that, contrary to expecta-

tion, temperature can be a stronger zeitgeber

than light in Neurospora.

Rapid light-induced increases of frq

mRNA and FRQ protein are associated with

light-induced clock resetting in Neurospora

(3, 17). Because temperature treatments mim-

ic light entrainment, we speculated that they

could yield similar molecular responses as

well. Additionally, because the peak level of

the FRQ oscillation increases dramatically

with increasing temperature (17, 18), we sur-

mised that the set point about which FRQ

levels oscillate could be higher at higher tem-

peratures and that this could explain how

shifting the organism from one temperature

to another would phase-shift the clock. To

examine this possibility, we performed pro-

tein immunoblot and Northern (RNA) blot

analyses to determine the rhythmic expres-

sion of FRQ protein and frq mRNA at tem-

peratures within the physiological tempera-

ture range for rhythmicity (16° to 32°C). The

levels of FRQ and frq mRNA were rhythmic

at 21° and 28°C (Fig. 1A), but the average

level about which FRQ oscillated at 28°C

was much higher than the level at 21°C; the

peak level of FRQ at 28°C was about three

times as high as the peak level at 21°C, and

the FRQ trough level at 28°C was slightly

greater than the FRQ peak at 21°C. Addition-

ally, as expected, temperature determined the

ratio of the two FRQ forms; there was rela-
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Fig. 1. The effects of temperature on the oscil-
lation in frq RNA and FRQ and the effects of
temperature steps on the phase of the rhythm.
(A) The ambient temperature determines the
average level about which FRQ amounts oscil-
late. Protein immunoblot and Northern blot
analyses show molecular rhythms of frq mRNA
and FRQ protein in cultures held in constant
darkness at 21° or 28°C (top). In the densitom-
etry data (bottom), the results from the hybrid-
izations have been normalized either to ribo-
somal RNA or to total protein (as represented
by amido black staining) as appropriate (21°C,
solid circles; 28°C, open circles). Schematic rep-
resentations of race tube assays show that the
overt rhythm is affected by steps between tem-
peratures within the temperature range per-
missive for rhythmicity (B) or by temperature
steps from outside to within the physiological
temperature range (C). Six separate sets of
cultures were grown on race tubes (30), and
these sets were stepped from one temperature
to another at the times indicated by the diag-
onal black bar; one set of control cultures for
each temperature were not stepped. The posi-
tion of each circle indicates the average time
when the center of the band of conidiation
occurred in a set of equivalent tubes (30). (B)
Reciprocal temperature steps within the phys-
iological range do not produce equivalent ef-
fects on the clock. Cultures were adjusted by
either a temperature step-up (from 21° to
28°C) or a temperature step-down (from 28° to
21°C). Step-ups result in strong resetting; the
time of the conidiation peaks parallels the time of transfer, with the first peak always occurring at
;21 hours after the transfer. In contrast, step-downs result in weaker resetting; the time of the
conidiation peaks occurs between 5 and 14 hours after the step and does not completely parallel
the transfer line. (C) Large temperature steps from outside to within the physiological range reset
the clock to characteristic times. Beginning from two time points about half a circadian cycle apart,
DD12 (grown for 12 hours in constant darkness at 25°C) and DD24 (grown for 24 hours in constant
darkness), cultures were transferred in darkness and incubated at either 12° or 38°C for 24 hours
before being released back into darkness at 25°C. The clock was reset to the same phase regardless
of the phase at the time of the temperature shift; the 12°C incubation reset the clock to about CT0
(subjective dawn), and the 38°C incubation reset the clock to about CT12 (subjective dusk).
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tively more full-length FRQ [FRQ(1–989)]

than small FRQ [FRQ(100–989)] at higher

temperatures (18). However, the level of frq

mRNA was about the same at both tempera-

tures. Similar experiments performed at other

temperatures (from 18° to 30°C) produced

results that were consistent with this pattern:

the higher the temperature, the higher the

average level about which FRQ oscillated.

The Q10 value (the increase in the amount of

FRQ for each 10°C increase in temperature)

of the FRQ peak level was about 4, perhaps

reflecting the temperature dependence of the

threshold level of FRQ required for rhythmic-

ity (18). Because the level of frq mRNA

showed little change with temperature, a tem-

perature-responsive posttranscriptional regu-

latory mechanism contributes to determining

the average level of the FRQ expression at all

times of day.

Because the function of FRQ is important

to the Neurospora clock, the finding that the

FRQ oscillation range is different at different

temperatures potentially provides a molecular

explanation for clock resetting by tempera-

ture steps. The same absolute amount of FRQ

must correspond to different circadian times

at different temperatures; therefore, when a

cell is transferred from one temperature to

another, the clock will be reset to the subjec-

tive time that corresponds to the actual

amount of FRQ in the cell as viewed in the

context of the new temperature. The size of

temperature step–induced phase shifts is a

function of the circadian time and the mag-

nitude of the temperature treatments (9, 10,

16), and large temperature steps elicit strong

resetting (16), moving the phase of the clock

to a restricted part of the circadian day; tem-

perature step-ups reset the clock to about

circadian time (CT) 0 (subjective dawn), and

temperature step-downs reset the phase to

between CT9 and CT12 (subjective dusk)

(Fig. 1, B and C) (9, 10, 16 ).

CT0 corresponds to the low point of the

FRQ oscillation, and CT12 corresponds to a

point when FRQ is highly expressed and

phosphorylated (17, 18). Because even the

peak level of FRQ at 21°C was slightly below

the trough level at 28°C, we expected that

temperature step-ups from 21° to 28°C would

always reset the clock to a time that corre-

sponds to the low point of the FRQ cycle,

about CT0 (Fig. 1B). Steps from 21° to 28°C

at any time did indeed completely reset the

clock, and the new phase (about CT0, the low

FRQ point in the cycle) was totally indepen-

dent of the old phase, which was consistent

with our prediction that every time point at

21°C is treated as the trough point of the FRQ

oscillation. Conversely, step-downs from 28°

to 21°C should reset the clock to the time that

corresponds to the high point of the FRQ

cycle, about CT12; however, results showed

that the resetting behavior was weaker than

that seen for step-ups (Fig. 1B). Although the

new phases were set to close to the high point

of the FRQ oscillation, they were nonetheless

somewhat dependent on the old phase, which

was consistent with previous studies (9, 10).

Temperature step-downs are not just a mirror

image of step-ups. Consistent with most cir-

cadian systems (8–10), steps from extreme

temperatures to temperatures within the per-

missive range reset the clock to CT0 and

about CT12, respectively (Fig. 1C).

We were intrigued by this asymmetrical

nature of the response to symmetrical tem-

perature steps, and we reasoned that because

the magnitude of the reciprocal temperature

steps was the same, some insight into why the

responses were different could come from

understanding the kinetics with which frq

expression changes after a temperature shift

and from understanding at what stage, trans-

lational or transcriptional, this regulation of

frq and FRQ expression was controlled. To

this end, Northern blot and protein immuno-

blot analyses were used to monitor the chang-

es in the expression of FRQ and frq after the

temperature steps (Figs. 2 and 3). Two dif-

ferent initial time points about half a circadi-

an cycle apart were chosen for these experi-

ments: DD12 (CT0, subjective dawn), where

FRQ levels are low and on the rise, and DD22

(CT13, subjective evening), where FRQ lev-

els are high and decreasing (17). Given the

observed differences in the amount of FRQ as

a function of temperature (Fig. 1) (17), we

expected that, after the temperature steps, the

amount of FRQ would either increase (for

step-ups) or decrease (for step-downs) to the

level that was appropriate for the new tem-

perature. For a temperature step-up from 21°

to 28°C, judging from the overt rhythm (Fig.

1, B and C), we predicted that the clock

would treat both time points as the trough of

the molecular oscillation and that FRQ would

increase with kinetics, independent of the

previous phase. In contrast, after step-downs

from 28° to 21°C, we predicted that FRQ

would decrease and then restart the cycle at a

much lower level.

These predictions were, in fact, the results

obtained (Fig. 2) at the level of translation

products. After temperature step-ups at either

time, FRQ increased rapidly, peaking about 6

hours later and then decreasing (Fig. 2A); the

kinetics of the response of FRQ were almost

identical at the two different phases. This is in

agreement with the overt rhythm data; the

clock was reset to close to the phase that

corresponded to the low point of the FRQ

oscillation, independent of the previous

phase. This response was also fast: only 1

hour after the step-up, the amount of FRQ

was already higher than the peak FRQ level

Fig. 2. Molecular cycles
in frq RNA and FRQ re-
spond quickly to shifts
in the ambient temper-
ature. Liquid cultures
were grown in constant
light at 25°C and then
transferred into dark-
ness at a control tem-
perature of either (A)
21°C or (B) 28°C. At
DD12 (circles) and
DD22 (squares), about
half of the cultures
were either stepped up
to 28°C (open symbols)
(A) or stepped down to
20°C (open symbols)
(B), the rest of the sam-
ples staying at the pre-
vious temperature as
controls (solid sym-
bols). Samples were
collected and pro-
cessed for protein im-
munoblot and North-
ern blot analyses (31)
at the times indicated.
In panel (A), tempera-
ture step-ups from 21°
to 28°C result in in-
creases in frq RNA and
FRQ. In panel (B), tem-
perature step-downs
from 28° to 20°C result
in a turnover of frq
RNA and FRQ; the bottom protein immunoblot analysis of FRQ is a
longer exposure of the FRQ that is shown in the top analysis.
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at 21°C. The peak level of FRQ after the

step-up was about three times the level of the

control samples at 21°C, a difference similar

to that shown in Fig. 1.

The response of the frq transcript to tem-

perature step-ups was quite different. Initial-

ly, frq was rapidly induced to a level about

2.5 times that of the control at 21°C; howev-

er, this induction was only transient, and the

amount of the frq transcript decreased after 2

hours. This response was independent of

phase. These data, along with data from Fig.

1 and (18), demonstrated that transcriptional

and posttranscriptional regulation contribute

to resetting by step-ups. After an initial reset-

ting of the clock, posttranscriptional regula-

tion keeps FRQ oscillating around higher lev-

els at higher temperatures. After a step-up, a

similar amount of time (;6 hours) always

elapses before the peak level of FRQ is

reached. Together, the resetting kinetics and

the internal dynamics of the feedback loop

provide an explanation for the phase seen

after resetting; FRQ amounts will increase for

6 to 8 hours, and therefore, the clock appears

to be immediately reset to the phase that

corresponds to a time of 6 to 8 hours before

the peak in FRQ, CT0.

The results of step-down experiments

were primarily opposite of the results of step-

ups (Fig. 2B). The amounts of frq mRNA and

FRQ decreased after the step-down, and the

responses were similar at different times.

FRQ became highly phosphorylated before

its degradation (17, 18) and remained at a low

level for about 8 hours before the initiation of

a new cycle of synthesis at hour 12. Thus,

after the step-down, the clock is reset to a

new phase that is near the peak of the FRQ

oscillation. In comparison, although the level

of frq mRNA also decreased after the step-

down, it reached the trough rather quickly

(within 2 hours), and the magnitude of the

decrease was not as great as with FRQ. Lev-

els of frq mRNA remained low for several

hours, started to increase at hour 8, and were

comparable to the peak at 28°C by hour 12.

For temperature step-downs then, the clock is

reset by adjusting the amount of FRQ to a

lower level that is appropriate for the lower

temperature, a change reflecting both tran-

scriptional and posttranscriptional effects.

Temperature, therefore, resets the Neuro-

spora clock in part by changing the levels of

frq and FRQ; as with light, the responses of

these clock components were rapid (being

visible within 15 min after a step) and pro-

portional to the size of the step (19), just as

the magnitude of phase shifts correlates with

the size of the temperature step (9, 10). How-

ever, unlike resetting by light, in which an

external factor triggers a cellular response

outside of the clock to effect a change in

phase, resetting by temperature appears to be

the result of changes brought about directly

within the oscillator. In the simplest case,

there need be no independent temperature

sensor to trigger a reaction; instead, the levels

of clock components (frq and FRQ, for ex-

ample) initially remain unchanged, but the

relative levels are interpreted by the dynam-

ics or “rules of the cycle” for the new tem-

perature, and the levels respond accordingly

by increasing or decreasing. Stated different-

ly, the same absolute amount of a clock com-

ponent, or ratio of components, corresponds

to a different subjective time at different tem-

peratures, and in terms of biological time, a

step change in temperature that alters the

relation between components has the same

effect as an instantaneous step change in the

amount of a clock component at a constant

temperature. There are clear parallels be-

tween this line of thinking and the limit cycle

view of circadian oscillators (20).

Our explanations provide a basis for un-

derstanding the direction and the magnitude

of shifts caused by small temperature steps,

but they can also speak to the action of large

shifts from outside to within the physiologi-

cal range. [Recent careful studies have con-

sidered the reverse of this, resetting by heat

shock pulses (21).] All clocks operate within

only a part of the physiological temperature

range for the growth of an organism (8, 18,

22), and an additional characteristic of circa-

dian systems is their ability to use single large

temperature steps from outside to within the

permissive temperature range as zeitgebers

(1, 8–10, 16, 22). Thus, steps from tempera-

tures above the permissive range to temper-

atures within it are interpreted as dusk (light

to dark), setting the clock to about CT12, and

steps from temperatures below the permissive

range to temperatures within it are interpreted

as dawn (9, 10, 16, 22, 23). To explore the

molecular basis of this response, we moni-

tored levels of frq mRNA and FRQ by fol-

lowing steps from a nonpermissive tempera-

ture to within the permissive temperature

range (Fig. 3). At low temperatures, frq

mRNA accumulated while FRQ dropped to

low levels (Fig. 3A) (19, 23), producing lev-

els typical of the late night during the circa-

dian cycle (17, 23). On transfer from 12° to

25°C, RNA levels began to fall within 4

hours, and FRQ rose to a peak at ;8 hours

after the transfer (Fig. 3A), which was a

response of FRQ that would be anticipated in

the normal cycle if the clock was held at

CT22 to CT0, given a strong pulse of light,

and then released. Conversely, when held at

38°C (above the permissive limit), frq mRNA

and highly phosphorylated FRQ accumulated

to moderate to high levels (Fig. 3B) (19) as

normally seen late in the subjective day (Fig.

1) or during prolonged exposure to constant

bright light (3, 19). On transfer to the permis-

sive range, RNA and protein levels fell in

concert as if the clock had been held at CT12

and then released. After 4 hours, the frq

transcript began to reappear, peaking at ;16

hours after the transfer [as it would normally

peak at ;16 hours after subjective dusk (24)],

and FRQ peaked 4 hours later at hour 20.

Thus, although we can only conjecture the

molecular basis of the forces that drive frq

mRNA and FRQ to the levels seen at the

temperature extremes, it appears that phases

of the oscillator following steps into the per-

missive range simply derive from the static

amounts of frq mRNA and FRQ protein seen

before the step.

The notion that light is the single most

important time cue for clock resetting for all

organisms is prominent in the literature, al-

though only a few systematic studies have

compared light and temperature (7, 8, 9, 13,

14, 25, 26). To better understand the relative

strength and relation between the two entrain-

ing factors, we designed experiments in

which we forced light and temperature to

compete with each other and found, surpris-

ingly, that temperature can be a stronger en-

training factor than light. First, because both

high temperature and light can elevate FRQ

expression, cultures were grown in constant

saturating bright light (LL) (.1000 lux) at

temperatures ranging from 4° to 30°C and

then transferred into darkness (DD) at 30°C

(Fig. 4A). The cultures were thus presented

with opposing phase cues: transfer from light

to dark (LD) sets the clock to dusk (CT12),

whereas a cold to warm transfer sets the clock

to dawn (CT0). If light is always dominant

over temperature, the phase of the clock

should always be set to about CT12 (dusk); as

predicted, the controls (30°C LL to 30°C DD)

were set to about CT12 (the center of the first

conidial band occurring ;10 hours after the

Fig. 3. Extended exposure to temperatures be-
yond the range for rhythmicity sets the amounts
of frq mRNA and FRQ at characteristic levels.
Neurospora liquid cultures were grown at 25°C LL
(31) and then transferred into darkness at (A)
12°C or (B) 38°C for 12 hours before stepping to
25°C DD at 0 hours. Cultures were harvested
either immediately or at 4-hour intervals for a full
day and processed for Northern blot (top) and
protein immunoblot (middle) analyses (31) [frq
mRNA (open circles); FRQ (solid circles)]. Experi-
ments in which the cultures were incubated at
12° and 38°C for 24 hours produced equivalent
results.
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LD transition). However, when cultures

grown at 18°C LL (well within the physio-

logical range) were stepped to 30°C, the

rhythm was substantially delayed, which is

consistent with the clock being set to about

CT4. Further decreases in the LL growth

temperature to 14°C or below (27) produced

further delays to phases near CT23.5 (about

subjective dawn). Thus, consistent with other

suggestions (14, 25), physiologically natural

temperature differences can be dominant over

transitions between saturating light and total

darkness.

We then asked how temperature cycles

along with LD cycles affect the phase of the

overt rhythm (Fig. 4B). The controls were LD

cycles at constant temperature (25°C) and

temperature cycles (20° to 30°C) in constant

darkness. As expected (9, 10, 26), conidiation

occurred mostly during the dark period in an

LD 12/12 cycle (12 hours of light and 12

hours of darkness) and in the low-tempera-

ture period of a 20°/30°C temperature cycle

(12 hours at 20°C and 12 hours at 30°C).

Temperature cycles yielded rhythms having

greater synchrony than those seen in LD cy-

cles; almost no conidiation occurred during

the high-temperature period (Fig. 4B). To

allow light and temperature to compete, we

introduced reversed LD-temperature cycles

(light and low temperature to dark and high

temperature), reasoning that if LD cycles de-

termined phase, we would see conidiation

occurring mostly during the dark phase. In-

stead, conidiation occurred mostly during the

light and 20°C period (Fig. 4B); the 20°/30°C

cycle was more effective in determining the

phase of the overt rhythm than the light to

dark cycle. The 10°C span for a temperature

cycle is not exceptional; such differences are

encountered almost daily in the spring and

fall in temperate regions of the world. Tem-

perature can thus be a stronger environmental

time cue for clock resetting than light.

An examination of the molecular corre-

lates of rhythmicity confirmed this result

(Fig. 4C) and further demonstrated the im-

portance of the amount of FRQ protein to the

overall determination of phase. Transfer from

cool light to warm darkness produced a

steady increase in the amount of FRQ but

(after a transient increase) produced a de-

crease in frq transcript amounts. Conversely,

although the reverse transfer (30°C DD to 20°

LL) elicited the expected transient increase in

the frq transcript, it ultimately produced a

decrease in FRQ. The relative effects of light

versus temperature are clearly seen in Fig.

4D; light induced the frq transcript, thereby

promoting FRQ synthesis (3, 17), but the

inherent temperature-responsive posttranscrip-

tional controls on FRQ translation (Fig. 1A)

(18) produced an effect that was twice as

strong, substantially increasing the amount of

FRQ present. These results complemented the

overt rhythm data (Fig. 4, A and B), demon-

strating for this oscillator that temperature, by

influencing the amount of FRQ, could play a

dominant role in setting the phase of the clock.

The ability of organisms to be entrained

by environmental signals is a fundamental

property of circadian clocks. We found that

temperature resets the Neurospora circadian

cycle by changing the set points and internal

dynamics of the feedback loop, in response to

which the levels of frq and FRQ change. FRQ

oscillated around a higher level at higher

temperatures as a result of posttranscriptional

regulation, and temperature changes resulted

in adjustments of frq mRNA and FRQ to

levels required by the new temperature; re-

sponses were rapid and proportional but

phase independent, in agreement with physi-

ological studies (9, 10). Our work concentrat-

ed on steps as being ecologically relevant, but

temperature pulses can be viewed simply as

two juxtaposed steps (7, 8); during a pulse,

the levels of frq mRNA and FRQ change in

response to the new set points defined by the

new temperature, so that on return to the

ambient temperature, the oscillator will have

moved to a different subjective time. Al-

though we began the study of temperature

effects with a mind-set that viewed tempera-

ture steps as akin to light treatments that

would change the levels of clock components

like FRQ, thereby resetting the oscillator, we

came to understand that this sequence is in

some sense reversed. It is instead, in broad

outline, the relation among the components

rather than their absolute amounts that is

instantaneously changed, and the amounts of

components like frq RNA and FRQ then

respond according to the time represented by

the new relation. Hence, the phase to which

the clock is set after a temperature step ap-

pears to be primarily the phase that corre-

sponds to the amounts of clock components

existing at the time when the step occurs, but

these amounts are interpreted in terms of the

new temperature, as predicted in the limit

cycle view of the clock pioneered by Winfree

(20). Given that small-amplitude temperature

cycles [1.5°C in Drosophila (15) and 1° to

2°C in lizards (14) and Neurospora (16)]

entrain circadian oscillators and that daily

temperature cycles in healthy human adults

range from 1° to 1.5°C, with a low point just

before dawn (28), it seems plausible that a

benefit of the human body temperature cycle

could be the daily nonphotic resynchroniza-

tion of the body’s cell and tissue autonomous

clocks. Additionally, parallels between mam-

mals and Neurospora in the effects of light

(6) and in the phase of cycling of putative

clock components per1, per2, and per3 in

darkness (6, 29) suggest that, like FRQ, the

low point of human brain PER proteins could

occur just before dawn at the time roughly

corresponding to the temperature nadir. In

nature, the asynchrony between light and

temperature cycles may be significant for

organisms living at temperate latitudes. In the

spring and fall, for instance, daily oscillations

in ambient temperature often span the lower

boundary of the physiological range for

rhythmicity (Neurospora, ;15°C; Gonyaul-

ax and several plant species, ;12°C; Dro-

Fig. 4. Temperature can be a stronger entrain-
ment factor than light. (A) When rhythmicity is
initiated by a single environmental transition,
temperature cues can take precedence over
light. Race tube cultures grown in constant light
at different temperatures (from 4° to 30°C)
were transferred into 30°C DD (31), and the
phase of the subsequent rhythms was moni-
tored. Densitometric scans of the race tube
images are shown to better compare the rela-
tive phases, and the actual steady-state phases
of the rhythms after the transition as calculat-
ed (16) are shown on the top left of each
rhythm’s trace. (B) With conflicting light and
temperature cycles, the conidiation rhythm can
follow the temperature cycle. LD 12/12 cycles
(white bars represent the light period; black
bars represent the dark period) and 20°/30°C
temperature cycles (stippled bars represent the
cool period; hatched bars represent the warm
period) were used. (C) Comparison of frq
mRNA and FRQ induction after light and tem-
perature shifts. (D) Side-by-side comparison of
the amount of FRQ induced by a shift from dark
to light conditions or from cool to warm con-
ditions; a step elevation in temperature can
produce stronger induction than a step from
darkness to light. The cultures were grown in
constant darkness at 18°C. At 0 hours, they
were transferred either to 18°C LL or to 30°C
DD, and samples were harvested and prepared
for protein immunoblot analysis at the hours
shown.
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sophilids, 8° to 15°C; lizards, 10°C) (8, 14,

22), so that, under these conditions, the dom-

inant entraining cue could be the temperature

cycle. Data presented here provide insight on

how physiologically and ecologically rele-

vant temperature steps and pulses act to reset

a day-phase circadian oscillator. More gener-

ally, the data provide another example in

which highly conserved and plainly adaptive

behaviors of a circadian system can be un-

derstood in terms of the straightforward re-

sponses of clock components to factors in the

environment of the organism.
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RNA-Mediated Trans-Activation

of Transcription from a Viral

RNA
Tim L. Sit, Andrew A. Vaewhongs, Steven A. Lommel*

The red clover necrotic mosaic virus genome is composed of two single-
stranded RNA components, RNA-1 and RNA-2. The viral capsid protein is
translated from a subgenomic RNA (sgRNA) that is transcribed from genomic
RNA-1. Here, a 34-nucleotide sequence in RNA-2 is shown to be required for
transcription of sgRNA. Mutations that prevent base-pairing between the
RNA-1 subgenomic promoter and the 34-nucleotide trans-activator prevent
expression of a reporter gene. A model is proposed in which direct binding of
RNA-2 to RNA-1 trans-activates sgRNA synthesis. This RNA-mediated regu-
lation of transcription is unusual among RNA viruses, which typically rely on
protein regulators.

RNA performs many of the functions that were

once thought to be restricted to proteins. RNA

molecules perform various enzymatic reactions

in addition to catalyzing peptide bond forma-

tion (1). Given this diversity of functions, it is

not surprising that gene expression can be reg-

ulated posttranscriptionally by the structure or

stability of an mRNA (2). Noncoding RNAs as

well as the 39 untranslated regions (39 UTRs)

of cellular mRNAs function as trans-acting

regulators of cell division and differentiation

(3). In the nematode Caenorhabditis elegans,

the small noncoding lin-4 RNAs alter the

stability or translatability (or both) of lin-14

mRNAs by interacting with their 39 UTRs

(4). However, RNA-mediated regulation of

transcription from an RNA molecule has not

been observed.

Red clover necrotic mosaic Dianthovirus

(RCNMV) contains two RNA components, a

polycistronic RNA-1, which encodes the viral

polymerase and capsid protein (CP), and RNA-

2, which encodes the viral movement protein
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