8 research outputs found

    STEREO database of interplanetary Langmuir electric waveforms

    Get PDF
    International audienceThis paper describes a database of electric waveforms that is available at the Centre de Données de la Physique des Plasmas (CDPP, http://cdpp.eu/). This database is specifically dedicated to waveforms of Langmuir/Z-mode waves. These waves occur in numerous kinetic processes involving electrons in space plasmas. Statistical analysis from a large data set of such waves is then of interest, e.g., to study the relaxation of high-velocity electron beams generated at interplanetary shock fronts, in current sheets and magnetic reconnection region, the transfer of energy between high and low frequencies, the generation of electromagnetic waves. The Langmuir waveforms were recorded by the Time Domain Sampler (TDS) of the WAVES radio instrument on board the STEREO mission. In this paper, we detail the criteria used to identify the Langmuir/Z-mode waves among the whole set of waveforms of the STEREO spacecraft. A database covering the November 2006 to August 2014 period is provided. It includes electric waveforms expressed in the normalized frame inline image with B and Vsw the local magnetic field and solar wind velocity vectors, and the local magnetic field in the variance frame, in an interval of ±1.5 min around the time of the Langmuir event. Quicklooks are also provided that display the three components of the electric waveforms together with the spectrum of E∄, together with the magnitude and components of the magnetic field in the 3 min interval, in the variance frame. Finally, the distribution of the Langmuir/Z-mode waves peak amplitude is also analyzed

    Langmuir waves: a database from the STEREO mission

    No full text
    International audienceLangmuir waves are ubiquitous in the planetary environments and the interplanetary medium. These electrostaticwaves occur in the range 10-30 kHz in the solar wind. They are of interest as they are linked to the electrondynamics. Moreover, they are at the origin of the most intense electromagnetic radio waves related to solar flareand interplanetaryshocks.The waveform analyzers of the WAVES instrument onboard of STEREO spacecraft have been observingthe interplanetary medium since more than seven years. A complete database of the observed Langmuir waves isaccessible to the community from the CDPP website (http://cdpp.eu/).We present here the details of the available information, as well as some analysis on different heliophysicalcontexts (interplanetary medium, shocks in particular)

    Planetary Science Resource Data Model

    No full text
    International audienceOne the goals of the Europlanet/IDIS project is the prototyping a Planetary Sciences Virtual Observatory (VO). Planetary sciences are covering several science thematics: atmospheres, surfaces, interiors, small bodies, orbital parameters, in situ exploration, plasma (waves, particle and fields), radio astronomy... They also include a large variety of data types: images, spectra, times series, movies, dynamic spectra, profiles, maps... and an even larger variety of physical parameters, including remote data, in-situ data, models, lab experiments, field analogs. The main challenge is thus to be able to homogeneously describe all the planetary science resources (dataset, files, services...). The skeleton of a such a description is the data model. The Planetary Science Resource Data Model (PSRDM) has been built using IVOA (International Virtual Observatory Alliance). We describe the content of Datasets and Granules (i.e., product, file, or the smallest granularity distributed by the service), not the access to the data. This description includes: Resource identification, Targets, Instruments (including hosting facility), Axis (including bounds, resolution, sampling, unit), Physical parameter (including UCD, unit)

    Planetary Science Resource Data Model

    No full text
    International audienceOne the goals of the Europlanet/IDIS project is the prototyping a Planetary Sciences Virtual Observatory (VO). Planetary sciences are covering several science thematics: atmospheres, surfaces, interiors, small bodies, orbital parameters, in situ exploration, plasma (waves, particle and fields), radio astronomy... They also include a large variety of data types: images, spectra, times series, movies, dynamic spectra, profiles, maps... and an even larger variety of physical parameters, including remote data, in-situ data, models, lab experiments, field analogs. The main challenge is thus to be able to homogeneously describe all the planetary science resources (dataset, files, services...). The skeleton of a such a description is the data model. The Planetary Science Resource Data Model (PSRDM) has been built using IVOA (International Virtual Observatory Alliance). We describe the content of Datasets and Granules (i.e., product, file, or the smallest granularity distributed by the service), not the access to the data. This description includes: Resource identification, Targets, Instruments (including hosting facility), Axis (including bounds, resolution, sampling, unit), Physical parameter (including UCD, unit)

    Joining the yellow hub: Uses of the Simple Application Messaging Protocol in Space Physics analysis tools

    No full text
    International audienceThe interest for data communication between analysis tools in planetary sciences and space physics is illustrated is this paper via several examples of the uses of SAMP. The Simple Application Messaging Protocol is developed in the frame of the IVOA from an earlier protocol called PLASTIC. SAMP enables easy communication and interoperability between astronomy software, stand-alone and web-based; it is now increasingly adopted by the planetary sciences and space physics community. Its attractiveness is based, on one hand, on the use of common file formats for exchange and, on the other hand, on established messaging models. Examples of uses at the CDPP and elsewhere are presented. The CDPP (Centre de Données de la Physique des Plasmas, http://cdpp.eu/), the French data center for plasma physics, is engaged for more than a decade in the archiving and dissemination of data products from space missions and ground observatories. Besides these activities, the CDPP developed services like AMDA (Automated Multi Dataset Analysis, http://amda.cdpp.eu/) which enables in depth analysis of large amount of data through dedicated functionalities such as: visualization, conditional search, cataloguing, etc. Besides AMDA, the 3DView (http://3dview.cdpp.eu/) tool provides immersive visualisations and is further developed to include simulation and observational data. These tools and their interactions with each other, notably via SAMP, are presented via science cases of interest to planetary sciences and space physics communities

    Automated Multi-Dataset Analysis (AMDA): An on-line database and analysis tool for heliospheric and planetary plasma data

    No full text
    International audienceAccessing, visualizing and analyzing heterogeneous plasma datasets has always been a tedious task that hindered students and senior researchers as well. Offering user friendly and versatile tools to perform basic research tasks is therefore pivotal for data centres including the Centre de Données de la Physique des Plasmas (CDPP http://www.cdpp.eu/) which holds a large variety of plasma data from various Earth, planetary and heliophysics missions and observatories in plasma physics. This clearly helps gaining increased attention, relevant feedback, and enhanced science return on data. These are the key ideas that crystallized at CDPP more than 15 years ago and resulted in the lay-out of the concepts, and then development, of AMDA, the Automated Multi-Dataset Analysis software (http://amda.cdpp.eu/). This paper gives a description of the architecture of AMDA, describes its functionalities, presents some use cases taken from the literature or fruitful collaborations and shows how it offers unique capabilities for educational purposes
    corecore