853 research outputs found

    Flow Visualization Study of the F-14 Fighter Aircraft Configuration

    Get PDF
    Water tunnel studies were performed to qualitatively define the flow field of the F-14. Particular emphasis was placed on defining the vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop water tunnel using a 1/72 scale model of the F-14 with a wing leading-edge sweep of 20 deg. Flow visualization photographs were obtained for angles of attack up to 55 deg and sideslip angles up to 10 deg. The F-14 model was investigated to determine the vortex flow field development, vortex path, and vortex breakdown characteristics as a function of angle of attack and sideslip. Vortex flows were found to develop on the highly swept glove and on the upper surface of the forebody. At 10 deg of sideslip, the windward glove vortex shifted inboard and broke down farther forward than the leeward glove vortex. This asymmetric breakdown of the vortices in sideslip contributes to a reduction in the lateral stability above 20 deg angle of attack. The initial loss of directional stability is a consequence of the adverse sidewash from the windward vortex and the reduced dynamic pressure at the vertical tails

    Flow visualization study of spanwise blowing applied to the F-4 fighter aircraft configuration

    Get PDF
    Water tunnel studies were performed to define the changes that occur in vortex flow fields above the wing due to spanwise blowing over the inboard and outboard wing panels and over the trailing-edge flaps. Flow visualization photographs were obtained for angles of attack up to 30 deg and sideslip angles up to 10 deg. The sensitivity of the vortex flows to changes in flap deflection angle, nozzle position, and jet momentum coefficient was determined. Deflection of the leading edge flap delayed flow separation and the formation of the wing vortex to higher angles of attack. Spanwise blowing delayed the breakdown of the wing vortex to farther outboard and to higher angles of attack. Spanwise blowing over the trailing edge flap entrained flow downward, producing a lift increase over a wide range of angles of attack. The sweep angle of the windward wing was effectively reduced in sideslip. This decreased the stability of the wing vortex, and it burst farther inboard. Reduced wing sweep required a higher blowing rate to maintain a stable vortex. A vortex could be stabilized on the outboard wing panel when an outboard blowing nozzle was used. Blowing from both an inboard and an outboard nozzle was found to have a favorable interaction

    A water tunnel flow visualization study of the F-15

    Get PDF
    Water tunnel studies were performed to qualitatively define the flow field of the F-15 aircraft. Two lengthened forebodies, one with a modified cross-sectional shape, were tested in addition to the basic forebody. Particular emphasis was placed on defining vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop diagnostic water tunnel using a 1/48-scale model of the F-15. Flow visualization pictures were obtained over an angle-of-attack range to 55 deg and sideslip angles up to 10 deg. The basic aircraft configuration was investigated in detail to determine the vortex flow field development, vortex path, and vortex breakdown characteristics as a function of angle of attack and sideslip. Additional tests showed that the wing upper surface vortex flow fields were sensitive to variations in inlet mass flow ratio and inlet cowl deflection angle. Asymmetries in the vortex systems generated by each of the three forebodies were observed in the water tunnel at zero sideslip and high angles of attack

    Flow visualization study of the HiMAT RPRV

    Get PDF
    Water tunnel studies were performed to qualitatively define the flow field of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT RPRV). Particular emphasis was placed on defining the vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop water tunnel using a 1/15 scale model of the HiMAT RPRV. Flow visualization photographs were obtained for angles of attack up to 40 deg and sideslip angles up to 5 deg. The HiMAT model was investigated in detail to determine the canard and wing vortex flow field development, vortex paths, and vortex breakdown characteristics as a function of angle of attack and sideslip. The presence of the canard caused the wing vortex to form further outboard and delayed the breakdown of the wing vortex to higher angles of attack. An increase in leading edge camber of the maneuver configuration delayed both the formation and the breakdown of the wing and canard vortices. Additional tests showed that the canard vortex was sensitive to variations in inlet mass flow ratio and canard flap deflection angle

    Enzymatic Determination of Hydroxysteroids in Human Skin Surface Lipids

    Get PDF

    Oxidation of TaSi2-Containing ZrB2-SiC Ultra-High Temperature Materials

    Get PDF
    Hot pressed coupons of composition ZrB2-20 v% SiC-5 v% TaSi2 and ZrB2-20 v% SiC-20 v% TaSi2 were oxidized in stagnant air at temperatures of 1627 and 1927C for one, five and ten 10-minute cycles. The oxidation reactions were characterized by weight change kinetics, x-ray diffraction, and SEM/EDS. Detailed WDS/microprobe quantitative analyses of the oxidation products were conducted for the ZrB2-20 v% SiC-20 v% TaSi2 sample oxidized for five 10-minute cycles at 1927C. Oxidation kinetics and product formation were compared to ZrB2-20 v% SiC with no TaSi2 additions. It was found that the 20 v% TaSi2 composition exhibited improved oxidation resistance relative to the material with no TaSi2 additions at 1627C. However, for exposures at 1927C less oxidation resistance and extensive liquid phase formation were observed compared to the material with no TaSi2 additions. Attempts to limit the liquid phase formation by reducing the TaSi2 content to 5 v% were unsuccessful. In addition, the enhanced oxidation resistance at 1627C due to 20 v% TaSi2 additions was not achieved at the 5 v% addition level. The observed oxidation product evolution is discussed in terms of thermodynamics and phase equilibria for the TaSi2-containing ZrB2-SiC material system. TaSi2-additions to ZrB2-SiC at any level are not recommended for ultra-high temperature (>1900C) applications due to excessive liquid phase formation

    Absolute quantitation of DNA methylation of 28 candidate genes in prostate cancer using pyrosequencing

    Get PDF
    This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Aberrant DNA methylation plays a pivotal role in carcinogenesis and its mapping is likely to provide biomarkers for improved diagnostic and risk assessment in prostate cancer (PCa). We quantified and compared absolute methylation levels among 28 candidate genes in 48 PCa and 29 benign prostate hyperplasia (BPH) samples using the pyrosequencing (PSQ) method to identify genes with diagnostic and prognostic potential. RARB, HIN1, BCL2, GSTP1, CCND2, EGFR5, APC, RASSF1A, MDR1, NKX2-5, CDH13, DPYS, PTGS2, EDNRB, MAL, PDLIM4, HLAa, ESR1 and TIG1 were highly methylated in PCa compared to BPH (p < 0.001), while SERPINB5, CDH1, TWIST1, DAPK1, THRB, MCAM, SLIT2, CDKN2a and SFN were not. RARB methylation above 21% completely distinguished PCa from BPH. Separation based on methylation level of SFN, SLIT2 and SERPINB5 distinguished low and high Gleason score cancers, e.g. SFN and SERPINB5 together correctly classified 81% and 77% of high and low Gleason score cancers respectively. Several genes including CDH1 previously reported as methylation markers in PCa were not confirmed in our study. Increasing age was positively associated with gene methylation (p < 0.0001). Accurate quantitative measurement of gene methylation in PCa appears promising and further validation of genes like RARB, HIN1, BCL2, APC and GSTP1 is warranted for diagnostic potential and SFN, SLIT2 and SERPINB5 for prognostic potential

    Gaze following and joint attention in rhesus monkeys (Macaca mulatta).

    Get PDF
    • …
    corecore