8 research outputs found
Enhanced recovery after cardiac surgery protocol reduces perioperative opioid use
Objective: Enhanced Recovery After Surgery protocols are relatively new in cardiac surgery. Enhanced Recovery After Surgery addresses perioperative analgesia by implementing multimodal pain control regimens that include both opioid and nonopioid components. We investigated the effects of an Enhanced Recovery After Surgery protocol at our institution on postoperative outcomes with particular focus on analgesia.
Methods: Single-center retrospective study comparing perioperative opioid use before and after implementation of an Enhanced Recovery After Surgery protocol at our institution. Subjects were divided into 2 cohorts: Enhanced Recovery After Surgery (study group from year 2020) and pre-Enhanced Recovery After Surgery (control group from year 2018). Baseline and perioperative variables including total opioid use from the day of surgery to postoperative day 5 were collected. Opioid use was calculated as morphine milligram equivalents and compared between the 2 cohorts.
Results: A total of 466 patients were included: 250 in the Enhanced Recovery After Surgery group and 216 in the pre-Enhanced Recovery After Surgery group. Both groups had similar baseline characteristics, but the Enhanced Recovery After Surgery group had significantly more subjects with intravenous drug use history (P < .0001), endocarditis (P < .0001), and liver disease (P = .007) compared with the pre-Enhanced Recovery After Surgery group. Every day from the day of surgery to postoperative day 5, the Enhanced Recovery After Surgery group had significant reduction (57%) in opioid use compared with the pre-Enhanced Recovery After Surgery group. Total opioid use for the entire length of stay was 259 morphine milligram equivalents in the Enhanced Recovery After Surgery group versus 452 morphine milligram equivalents in the pre-Enhanced Recovery After Surgery group (P < .0001). Subgroup analysis of subjects with intravenous drug use history did not demonstrate a significant reduction in opioid use.
Conclusions: Enhanced Recovery After Surgery protocols with an emphasis on multimodal pain management throughout perioperative care are associated with a significant reduction in the postoperative use of opioid analgesics
Recommended from our members
Reimagine fire science for the anthropocene.
Acknowledgements: The authors thank Kathy Bogan with CIRES Communications for the figure design and creation, and two anonymous reviewers for comments on an earlier version of the manuscript.Funder: National Center for Atmospheric Research 12|0; DOI: https://doi.org/10.13039/100005323Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the "firehose" of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future
Recommended from our members
Reimagine fire science for the anthropocene
Acknowledgements: The authors thank Kathy Bogan with CIRES Communications for the figure design and creation, and two anonymous reviewers for comments on an earlier version of the manuscript.Funder: National Center for Atmospheric Research 12|0; DOI: https://doi.org/10.13039/100005323Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future
Recommended from our members
Reimagine fire science for the anthropocene.
Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the "firehose" of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future
Recommended from our members
Reimagine fire science for the anthropocene
Acknowledgements: The authors thank Kathy Bogan with CIRES Communications for the figure design and creation, and two anonymous reviewers for comments on an earlier version of the manuscript.Funder: National Center for Atmospheric Research 12|0; DOI: https://doi.org/10.13039/100005323Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future