7 research outputs found

    Direct Measurement of Perchlorate Exposure Biomarkers in a Highly Exposed Population: A Pilot Study

    Get PDF
    Exposure to perchlorate is ubiquitous in the United States and has been found to be widespread in food and drinking water. People living in the lower Colorado River region may have perchlorate exposure because of perchlorate in ground water and locally-grown produce. Relatively high doses of perchlorate can inhibit iodine uptake and impair thyroid function, and thus could impair neurological development in utero. We examined human exposures to perchlorate in the Imperial Valley among individuals consuming locally grown produce and compared perchlorate exposure doses to state and federal reference doses. We collected 24-hour urine specimen from a convenience sample of 31 individuals and measured urinary excretion rates of perchlorate, thiocyanate, nitrate, and iodide. In addition, drinking water and local produce were also sampled for perchlorate. All but two of the water samples tested negative for perchlorate. Perchlorate levels in 79 produce samples ranged from non-detect to 1816 ppb. Estimated perchlorate doses ranged from 0.02 to 0.51 µg/kg of body weight/day. Perchlorate dose increased with the number of servings of dairy products consumed and with estimated perchlorate levels in produce consumed. The geometric mean perchlorate dose was 70% higher than for the NHANES reference population. Our sample of 31 Imperial Valley residents had higher perchlorate dose levels compared with national reference ranges. Although none of our exposure estimates exceeded the U. S. EPA reference dose, three participants exceeded the acceptable daily dose as defined by bench mark dose methods used by the California Office of Environmental Health Hazard Assessment

    Mercury Toxicity and Contamination of Households from the Use of Skin Creams Adulterated with Mercurous Chloride (Calomel)

    No full text
    Inorganic mercury, in the form of mercurous chloride, or calomel, is intentionally added to some cosmetic products sold through informal channels in Mexico and the US for skin lightening and acne treatment. These products have led to multiple cases of mercury poisoning but few investigations have addressed the contamination of cream users’ homes. We report on several cases of mercury poisoning among three Mexican-American families in California from use of mercury-containing skin creams. Each case resulted in widespread household contamination and secondary contamination of family members. Urine mercury levels in cream users ranged from 37 to 482 µg/g creatinine and in non-users from non-detectable to 107 µg/g creatinine. Air concentrations of up to 8 µg/m3 of mercury within homes exceeded the USEPA/ATSDR health-based guidance and action level of <1.0 μg/m3. Mercury contamination of cream users’ homes presented a multi-pathway exposure environment to residents. Homes required extensive decontamination, including disposal of most household items, to achieve acceptable air levels. The acceptable air levels used were not designed to consider multi-pathway exposure scenarios. These findings support that the calomel is able to change valence form to elemental mercury and volatilize once exposed to the skin or surfaces in the indoor environment
    corecore