59 research outputs found

    Relaxin-2 therapy reverses radiation-induced fibrosis and restores bladder function in mice

    Get PDF
    Aim: To determine the efficacy of human relaxin-2 (hRLX2) in reversing radiation-induced bladder fibrosis and lower urinary tract dysfunction (LUTD). Radiation cystitis is a consequence of radiotherapy for pelvic malignancies. Acutely, irradiation leads to reactive oxygen/nitrogen species in urothelial cells, apoptosis, barrier disruption, and inflammation. Chronically, this results in collagen deposition, bladder fibrosis, and attenuated storage and voiding functions. In severe cases, cystectomies are performed as current therapies do not reverse fibrosis. Methods: We developed a mouse model for selective bladder irradiation (10 Gray; 1 Gy=100 rads) resulting in chronic fibrosis within 6 weeks, with decreased bladder compliance, contractility, and overflow incontinence. Seven weeks post-irradiation, female C57Bl/6 mice were continuously infused with hRLX2 (400μg/kg/day/14 days) or vehicle (saline) via subcutaneous osmotic pumps. Mice were evaluated in vivo using urine spot analysis, cystometrograms and external urethral sphincter electromyograms; and in vitro using length-tension measurements, Western blots, histology, and immunohistochemistry. Results: hRLX2 reversed fibrosis, decreased collagen content, improved bladder wall architecture, and increased bladder compliance, detrusor smooth muscle Cav1.2 expression and detrusor contractility in mice with chronic radiation cystitis. hRLX2 treatment outcomes were likely caused by the activation of RXFP1/2 receptors which are expressed on the detrusor. Conclusion: hRLX2 may be a new therapeutic option for rescuing bladders with chronic radiation cystitis

    Targeting p75 neurotrophin receptors ameliorates spinal cord injury-induced detrusor sphincter dyssynergia in mice

    Get PDF
    Aims: To determine the role of p75 neurotrophin receptor (p75NTR) and the therapeutic effect of the selective small molecule p75NTR modulator, LM11A-31, in spinal cord injury (SCI) induced lower urinary tract dysfunction (LTUD) using a mouse model. Methods: Adult female T8-T9 transected mice were gavaged daily with LM11A-31 (100mg/kg) for up to 6 weeks, starting 1 day before, or 7 days following injury. Mice were evaluated in vivo using urine spot analysis, cystometrograms (CMGs), and external urethral sphincter (EUS) electromyograms (EMGs); and in vitro using histology, immunohistochemistry, and Western blot. Results: Our studies confirm highest expression of p75NTRs in the detrusor layer of the mouse bladder and lamina II region of the dorsal horn of the lumbar-sacral (L6-S1) spinal cord which significantly decreased following SCI. LM11A-31 prevented or ameliorated the detrusor sphincter dyssynergia (DSD) and detrusor overactivity (DO) in SCI mice, significantly improving bladder compliance. Furthermore, LM11A-31 treatment blocked the SCI-related urothelial damage and bladder wall remodeling. Conclusion: Drugs targeting p75NTRs can moderate DSD and DO in SCI mice, may identify pathophysiological mechanisms, and have therapeutic potential in SCI patients

    More than just a barrier: urothelium as a drug target for urinary bladder pain

    No full text

    Neuromodulation of Urinary Tract Function

    Full text link

    Pathophysiological Mechanisms of Nocturia and Nocturnal Polyuria:The Contribution of Cellular Function, the Urinary Bladder Urothelium, and Circadian Rhythm

    No full text
    Alterations to arginine vasopressin (AVP) secretion, the urinary bladder urothelium (UT) and other components of the bladder, and the water homeostasis biosystem may be relevant to the pathophysiology of nocturia and nocturnal polyuria (NP). AVP is the primary hormone involved in water homeostasis. Disruption to the physiological release of AVP or its target effects may relate to several urinary disturbances. Circadian dysregulation and the effects of aging, for example, the development of oxidative stress and mitochondrial dysfunction, may play a role in nocturia voiding symptoms. The urinary bladder UT not only acts as a highly efficient barrier that is maintained during the filling and voiding of the urinary bladder, but is also capable of sensory and transducer function through a network of functional receptors and ion channels that enable reciprocal communication between UT cells and neighboring elements of the bladder mucosa and wall. Functional components of the UT (eg, claudins and receptors or ion channels) play important roles in AVP-mediated water homeostasis. These components and functions involved in water homeostasis, as well as kidney function, may be affected by the aging process, including age-related mitochondrial dysfunction. The characteristics of NP are discussed and the association between NP and circadian rhythm is examined in light of reports that suggest that nocturia should be considered as a type of circadian dysfunction. Many possible pathologic mechanisms that underlie nocturia and NP have been identified. Future studies may provide further insight into pathophysiology with the hope of identifying new treatment modalities. (C) 2019 Elsevier Inc

    Sensory Receptor, Inflammatory, and Apoptotic Protein Expression in the Bladder Urothelium of Patients with Different Subtypes of Interstitial Cystitis/Bladder Pain Syndrome

    No full text
    The aim of this study was to investigate the expression levels of sensory receptors, inflammatory proteins, and pro-apoptotic proteins in the urothelium of non-Hunner’s interstitial cystitis (NHIC) bladders of patients with different clinical and cystoscopic phenotypes. The urothelia from the bladders of 52 NHIC patients were harvested. The expression of sensory receptors, including TRPV1, TRPV4, TRPA1, H1-receptors, and sigma-1 receptors; the inflammatory proteins p38 and tryptase; and the pro-apoptotic proteins, such as caspase-3, BAD, and BAX in the urothelium, were investigated using immunohistochemistry and Western blotting. We compared the expression levels of these proteins in NHIC subtypes according to IC symptom scores, visual analog scores of bladder pain, maximal bladder capacity, glomerulation grades, and combined maximal bladder capacity and glomerulations after cystoscopic hydrodistention. The expression levels of TRPV1, TRPV4, sigma-1, P38, tryptase, caspase-3, and BAD were significantly increased in the urothelium of IC/BPS patients compared with the expression levels in the controls. TRPV1 was significantly associated with IC symptom severity. However, no significant differences in sensory receptor expression in the IC/BPS bladders with different bladder conditions were detected. Inflammatory and pro-apoptotic protein expression levels in the urothelium were similar among the IC/BPS subgroups. This study concluded that IC/BPS patients with frequency and bladder pain complaints have higher levels of urothelial sensory receptors, and inflammatory and pro-apoptotic proteins. The expression levels of these sensory receptors, inflammatory proteins, and pro-apoptotic proteins are not significantly different among IC/BPS bladders with different conditions
    • …
    corecore