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Abstract 

Aim: To determine the efficacy of human relaxin-2 (hRLX2) in reversing radiation-

induced bladder fibrosis and lower urinary tract dysfunction (LUTD).  Radiation cystitis is 

a consequence of radiotherapy for pelvic malignancies.  Acutely, irradiation leads to 

reactive oxygen/nitrogen species in urothelial cells, apoptosis, barrier disruption and 

inflammation.  Chronically, this results in collagen deposition, bladder fibrosis and 

attenuated storage and voiding functions.  In severe cases, cystectomies are performed 

as current therapies do not reverse fibrosis. 

 
Methods: We developed a mouse model for selective bladder irradiation (10 Gray; 1 Gy 

= 100 rads) resulting in chronic fibrosis within six weeks, with decreased bladder 

compliance, contractility and overflow incontinence.  Seven weeks post irradiation, 

female C57Bl/6 mice were continuously infused with hRLX2 (400 µg/kg/day/14 days) or 

vehicle (saline) via subcutaneous osmotic pumps.  Mice were evaluated in vivo using 

urine spot analysis, cystometrograms and external urethral sphincter electromyograms; 

and in vitro using length-tension measurements, Western blots, histology and 

immunohistochemistry. 

 
Results: hRLX2 reversed fibrosis, decreased collagen content, improved bladder wall 

architecture, and increased bladder compliance, detrusor smooth muscle Cav1.2 

expression and detrusor contractility in mice with chronic radiation cystitis.  hRLX2 

treatment outcomes were likely caused by the activation of RXFP1/2 receptors which 

are expressed on the detrusor. 

 



Conclusion: hRLX2 may be a new therapeutic option for rescuing bladders with chronic 

radiation cystitis.  



Introduction 

Radiation cystitis.  Radiation is a major intervention in treating pelvic organ 

malignancies.  However, the risk for developing complications such as radiation cystitis 

limits the radiation dose1.  The consequences of radiotherapy include a dose-dependent 

detrimental effect on normal organ function within the irradiated field2. 

Chronic radiation cystitis can develop six to twelve months following radiotherapy 

with a prevalence of ~7%3.  Consequences include vascular endothelial cell damage, 

inflammation, ischemia, collagen deposition and decreased bladder compliance3.  A 

major feature of the chronic phase is mild to life-threatening hematuria4.  Severely 

decreased bladder compliance due to collagen deposition can impair ureteric emptying 

causing renal dysfunction.  Voiding failure can develop as the detrusor becomes 

progressively underactive and eventually acontractile.  Ultimately the patient may 

require a cystectomy, to prevent renal failure and preserve some quality of life.  Current 

therapies include anticholinergic agents for frequency and urgency, pain relief 

medications, cranberry juice capsules or instillation of hyaluronic acid and/or chondroitin 

sulfate which are symptomatic, invasive and often ineffective.  Crucially, they do not 

reverse fibrosis to improve bladder compliance, and in theory could worsen it.  There is 

currently no effective treatment to reverse bladder fibrosis, so it remains an unmet 

public health problem. 

Contributing mechanisms of bladder fibrosis.  The urinary bladder is composed of 

mucosa and muscular detrusor layers.  The mucosa includes the urothelium and lamina 

propria; with the latter containing an extracellular matrix (ECM), composed of elastin, 

collagen-I and -III fibers.  The ECM provides strength during contractions, high 



compliance during relaxation and low pressure storage of urine5.  Collagen is 

continuously synthesized and degraded, but locally produced proinflammatory cytokines 

and other activators can impair this homeostatic balance by transforming fibroblasts to 

myofibroblasts to drive fibrosis6.  Transforming growth factor beta-1 (TGF-β1) is 

implicated in the stimulation of membrane-cytoskeletal structural protein formation and 

in the synthesis of ECM through multiple signaling pathways7.  TGF-β1 exerts ECM-

preserving actions by suppressing matrix metalloproteinases (MMPs) activity and by 

inducing synthesis of protease inhibitors, such as tissue inhibitor of metalloproteinase 

(TIMP). 

Relaxin hormone.  Relaxin is a 6 kilodalton hormone first described in 1926 for 

inducing relaxation of uterine smooth muscle and softening of the pubic symphysis 

during pregnancy.  However, this direct relaxation effect has only been observed on the 

uterine tissue of humans, pigs and rodents during pregnancy 8.  Non-pregnant pigs 9 

and rats 10-12 must be pre-treated with high-dose estrogen for at least three days to 

induce direct relaxation of uterine smooth muscle.  Direct relaxing effects of the 

hormone have not been reported for other smooth muscle including bladder.  This 6 

kilodalton hormone is also produced in the prostate and testes to enhance sperm 

motility13.  It belongs to the insulin superfamily that includes relaxin-1 to -4 and insulin-

like peptide-3 to -6.  Peptides signal through four G-protein coupled receptors (RXFP1-

4), with RXFP1 having the highest affinity for hRLX214. 

The differential effects of hRLX2 are mediated by at least three pathways where 

two are activated by the α-chain acting through RXFP1/2 and a third by the β-chain 

acting on RXFP1 (Figure 1).  The α-chain pathway elicits elevations of cAMP that 



enhance smooth muscle contractility through protein kinase A (PKA) inhibition of RhoA, 

which may also increase the expression of voltage-gated Ca2+ channel currents15.  The 

cAMP pathway is also involved in enhancement of proangiogenic signaling.  The β-

chain is mediated through pERK1/2 and the cGMP pathway16. 

RXFP1 activation by the β-chain increases phosphorylation of extracellular 

signal-regulated protein kinase 1 and 2 (pERK1/2) that enhances neuronal nitric oxide 

synthase (NOS) activity and cyclic guanosine monophosphate (cGMP) generation14.  

Activation of this pathway disrupts profibrotic TGF-β/Smad2 phosphorylation (pSmad2) 

signaling17 to inhibit collagen synthesis, promote expression of MMPs18 and decrease 

expression of TIMPs7.  RXFP1 may potentially prevent further inflammatory responses 

by directly inhibiting immune cell activation19. 

The present study on the potential efficacy of relaxin in irradiation-induced 

fibroses in LUT organs was motivated by the published clinical findings on the 

antifibrotic properties of hRLX2 in acute heart failure20.  Furthermore, neither the 

expression of RXFP receptors nor the effect of relaxin peptides in the LUT have been 

described.  In this study, we utilized a mouse model of selective bladder irradiation to 

demonstrate the efficacy of hRLX2 in reversing the fibrotic consequences of chronic 

radiation cystitis. 

 

Methods 

Selective bladder irradiation.  Adult female C57Bl/6 mice (6-18 weeks, Envigo labs) 

were anesthetized with 2,2-tribromoethanol (300 mg/kg, intraperitoneal) and a small 

incision was made into the lower abdominal wall to expose the bladder.  A suture was 



tied to the urachus and mice placed sideways on a Lexan platform, allowing the organ 

to be externalized during irradiation (Figure 2A).  Bladders were catheterized with a FEP 

shield from a 24Ga BD angiocath, emptied and filled with 75 μl of saline for 

standardization.  Mice were placed in an X-RAD 320 biological irradiator (Precision X-

Ray) and the collimator and table height adjusted to focus the irradiation beam to 

ensure that only the bladder was irradiated.  After delivery of a 10 Gy irradiation dose, 

the bladder was returned to the abdominal cavity, the incision sutured, and mice 

allowed to recover for up to 10 weeks.  ALZET© osmotic pumps (model 1002) filled with 

saline (control) or recombinant hRLX2 (50 to 400 µg/kg/day) were implanted 

subcutaneously at the lower mid-region of the animal’s back seven weeks post 

irradiation.  Animals were used for experiments 15 days following implantation. 

Urine spot assay. Mice were placed individually for 2 hours, between 11:00 am 

and 2:00 pm, in identical clean metabolic cages lined with Whatman filter paper.  Food 

and water were withheld during this period.  At the end, filter papers were collected for 

illumination with UV light and images retained as TIFF files for analysis with ImageJ 

software as reported previously21.  Briefly, images were grayscaled, inverted, auto-

thresholded using “Max entropy” method, converted to binary and “analyze particles” 

function used excluding particles smaller than 135 pixel2 (< 0.5 μl).  Calibration curve 

corresponding spot sizes to volumes was built based on known volumes of urine 

pipetted on the paper.  Linear relation was confirmed with R2=0.9975, where volume [μl] 

= 0.0037 x spot size [pixel2] (supplemental Figure 9). 

Cystometrogram/electromyogram (CMG/EMG) recordings from decerebrate 

mice. Mice were anesthetized using isoflurane (5% induction/2% maintenance in O2) 



and an incision made into the neck to expose the carotid arteries and the trachea.  

Ligatures were placed around the carotid arteries to decrease cerebral blood flow and a 

tracheotomy was performed using PE-60 tubing connected to the anesthesia delivery 

system.  A craniotomy was performed and the brain rostral to the supracollicular level 

sectioned away.  Decerebration permits bladder cystometry without the use of 

anesthetics, which can modify reflex bladder contractions.  A PE-50 catheter was 

inserted through the bladder dome, secured using a suture and connected to a pressure 

transducer and syringe pump.  Two epoxy-coated, copper wire 50 μm EMG electrodes 

were inserted transperineally 1 mm lateral to the mid urethra to record from the EUS.  

To perform voiding cystometry, the bladder was manually emptied and then filled with 

saline at 0.01 ml/min until reflex contractions were elicited.  Bladder compliance was 

calculated as the volume infused into the bladder between two consequent contractions 

divided by the difference between pressure threshold and baseline pressure 

[μl/cmH2O].  Voided and residual volumes were estimated knowing the volume of saline 

infused. 

Blood collection and assays of exogenously administered hRLX2 or endogenous 

mRLX1.  Micro-hematocrit capillary tubes were used to collect 100-150 µl of blood from 

mouse tails.  Tubes were centrifuged at 20,000 x g for 15 min to separate plasma from 

the cellular components.  Plasma samples were rapidly frozen and stored at –80 °C 

until used for ELISA measurements of hRLX2 (R&D systems) or mRLX1 (LifeSpan 

BioScience). 

In vitro measurement of passive and active contractile properties.  Strips of 

bladder (8 mm by 1-2 mm) were obtained by cutting the bladder along the ventral 



midline.  These were mounted in a temperature-controlled recording chamber22 and 

connected to an isometric tension transducer and an anchor connected to a computer-

controlled stepper motor to implement stretch protocols.  Strips were superfused with a 

modified Tyrode’s solution23 and maintained at 36 ± 0.5°C.  The baseline was stabilized 

and electrical field stimulation (EFS) with platinum electrodes (20 Hz, 3 sec train, 0.1 ms 

pulse width) was performed.  Preparations were stretched incrementally to their optimal 

length (LO) at which peak EFS contractions are elicited24 and subsequent stretches 

resulted in decreased contractions.  EFS stimulation was then switched off and 

responses to muscarinic (oxotremorine-M, 0.1-10 µM) and KCl-induced depolarization 

(120 mM) were examined.  All forces were normalized to cross-sectional area and 

expressed as milli-Newtons per milli-meter squared (mN/mm2). 

Histology.  Mice were treated with 200 units of heparin (intraperitoneal injection), 

anesthetized using 2,2-tribromoethanol and transcardially perfused with oxygenated 

Krebs solution before removal of the bladders.  Bladders were cut open along the 

ventral aspect from urethra to dome and flattened between glass plates in 10% buffered 

formalin for 1 hr; then fixed overnight without the plates, embedded in paraffin and 2 µm 

sections cut.  Sections were stained with van Gieson solution (Sigma) and visualized 

using bright field microscopy.  The percentage of collagen per total tissue area was 

calculated using ImageJ software from three TIFF images per section. 

Immunofluorescence.  Bladders were isolated, cut open into sheets, placed into 

cryo-molds, covered in optimal cutting temperature medium and frozen on dry ice.  Slide 

mounted sections (10 µm) were post-fixed in 4% paraformaldehyde and blocked with 

10% donkey serum in 1X tris buffered saline + 0.1% Triton-X 100.  Sections were 



incubated overnight with antibodies against RXFP1, RXFP2 (Santa Cruz Biotechnology, 

see Supplemental Figure 11 for details), α-smooth muscle actin (Abcam) or Cav1.2 

(Alomone Labs) followed by incubation in Alexa Fluor (488 and 594 nm) anti-rabbit or 

goat IgG conjugates and DAPI for nuclear staining and examined using widefield or 

confocal fluorescence microscopy.  Refer to supplemental figure 11 for full details of 

antibodies. 

Western blotting. Tissue samples were homogenized in Hank’s balanced salt 

solution containing complete protease inhibitor cocktail (1 tablet/10 ml, Roche) and 

phosphatase inhibitor cocktail (Sigma, 1:100).  After centrifugation (10,000 x g; 15 min 

at 4ºC), the supernatant was collected, and the membrane protein fraction prepared by 

suspending pellets in lysis buffer (0.3 M NaCl, 50 mM Tris-HCl pH7.6 and 0.5% Triton 

X-100) with protease/phosphatase inhibitors as above.  Supernatants were pooled for 

whole cell lysates and protein concentrations determined using a BCA protein assay 

(Pierce).  After denaturation (100ºC for 5 min) in Laemmli sample buffer, each lysate 

was separated on a 4-15% TGX Stain-Free SDS-PAGE gel (Bio-Rad). Proteins were 

transferred to PVDF membranes and incubated overnight at 4ºC with primary antibodies 

against RXFP1, RXFP2 and smooth muscle actin (details of antibodies in supplemental 

figure 11) diluted in Tris-buffered saline with 0.1% Tween-20 (TBS-T) containing 5% 

(w/v) milk.  Membranes were incubated with appropriate horseradish peroxidase 

conjugated secondary antibodies in 5% (w/v) Milk TBS-T, washed, and incubated in 

WesternBright Quantum (Advansta) for chemiluminescent imaging (ChemiDoc MP, Bio-

Rad).  Optical density of each protein species was normalized to total protein levels 

using Image Lab software (Bio-Rad). 



RT-qPCR. Tissues were harvested from four female mice and lysed using a bead 

homogenizer (MP FastPrep-24). Total RNA was extracted using an RNeasy mini kit 

(Qiagen) and used to generate cDNA using the iScript cDNA Synthesis Kit (Bio-Rad). 

RT-qPCR was performed on a CFX Connect (Bio-Rad). Each PCR reaction was 

completed with 1.5 μL of cDNA using the TaqMan Fast Advanced Master Mix (Life 

Technologies). TaqMan probes were RXFP1 (Mm01220214_m1), RXFP2 

(Mm01218503_m1), and reference gene HPRT (Mm00446968_m1). Expression levels 

were quantified using the 2-ΔCt method. 

Data and statistical analysis.  Data from tension recordings were expressed as 

mean ± standard deviation from ‘n’ experiments.  Force-frequency plots were fitted to 

T= (Tmax●fn) / (f1/2n + fn), where T is the contraction magnitude, Tmax is the maximum 

tension at the highest frequency and f1/2 is the stimulation frequency at which Tmax/2 

and n is a constant23.  One-way ANOVA was used to determine between group 

differences and unpaired Student’s t-tests determined differences between control vs. 

irradiated or vehicle vs. relaxin treated data sets.  The null hypothesis was rejected at 

p<0.05. 

Study Approval.  All animal procedures were in accordance to the National 

Institutes of Health ‘Guide for the Care and Use of Laboratory Animals and received 

ethical approval from the Institutional Animal Care and Use Committee of the authors’ 

University. 

 

 

Results 



hRLX2 treatment restores normal bladder function in mice with chronic radiation 

cystitis.  Since abdominal irradiation at the selected dose could be lethal (LD50 ≅ 8 Gy)25 

we developed a mouse model of chronic radiation cystitis by performing a laparotomy 

where the bladder is briefly exteriorized for selective high dose (10 Gy) irradiation 

(Figure 2A).  hRLX2 did not significantly affect the voiding function of nonirradiated mice 

(Figure 2C). Cystometry performed nine weeks post irradiation demonstrated a loss of 

the micturition response and exhibited overflow incontinence as shown in Figure 2D.  

Respective external urethral sphincter electromyogram (EUS-EMG, green traces) 

demonstrated that animals had prolonged guarding reflexes and that normal phasic 

bursting activity as seen in Figure 2B did not occur.  However, when hRLX2 was 

administered (400 µg/kg/day) for two weeks in 7 week post-irradiated animals, the 

CMGs and EUS-EMGs (Figure 2E) became similar to those seen in nonirradiated mice 

(Figure 2B) with the return of a normalized guarding reflex and bursting (Figure 2E, right 

panel) permitting voiding.  It is important to note that while human and rodent sphincters 

exhibit a guarding reflex as bladder pressures approach threshold, the sphincter in 

humans completely relaxes, whereas rodents normally exhibit a pattern of intermittent 

phasic activity (“bursting”)26 during which decreased tonic activity permits pulsatile 

voiding to occur (Figure 2B, C and 2E).  Detailed CMG and EUS-EMG parameters are 

listed in the tables in Supplemental Figures 6 and 7, respectfully. 

Chronic radiation cystitis results in a time-dependent development of voiding 

dysfunction which is reversed by hRLX2 treatment.  The voiding patterns of mice 

following bladder irradiation were evaluated at different time points by noninvasive void 

spot assay (Figure 3).  Nonirradiated control animals display continence by generally 



voiding in one area of the cage.  hRLX2 treatment does not affect this behavior.  In 

contrast, voiding spot analysis performed two weeks following irradiation, revealed urine 

leakage suggestive of incontinence.  At 12 weeks post irradiation, there were random 

patterns of urine spots with smaller voided volumes (Supplemental Figure 8).  hRLX2 

treatment (50 and 400 µg/kg/day for 14 days) normalized the chronic radiation cystitis 

induced voiding pattern, as indicated by effective bladder emptying and larger voided 

volumes.  The increased voided volumes in irradiated mice treated at the lower dose of 

50 µg/kg/day were marred by indications of unresolved incontinence (i.e., multiple small 

urine spots).  At 400 µg/kg/day, mice showed a voiding pattern like that of control mice, 

with only one to two large urine spots present at the end of the assay comparable to 

those of nonirradiated controls. 

Decrease in tissue compliance and contractility secondary to bladder irradiation-

mediated fibrosis is reversed by hRLX2 treatment.  The effect of ionizing radiation on 

bladder tissue contractility and compliance was evaluated by organ bath experiments 

with isolated bladder strips.  In length-tension studies, there was a marked increase in 

passive tension of irradiated mouse bladders (i.e., decrease in tissue compliance) which 

was evident by four weeks post irradiation and peaked by six to nine weeks (Figure 4A).  

There was no significant difference at time points up to 16 weeks post exposure (not 

shown).  Moreover, the increased passive tension in irradiated bladders was also 

revealed by measurements performed with 5 mM EDTA-Tyrode’s solution (Ca2+ free) 

(Figure 4B), further supporting that increased ECM deposition alone alters relaxation 

properties of the bladder wall.  In chronic radiation cystitis, the decreased contractility 

and compliance were reversed by a two weeks treatment with hRLX2 (400 µg/kg/day) 



with experimental recordings becoming comparable to those of nonirradiated mouse 

bladders (Figure 4C).  Furthermore, hRLX2 treatment increased active force generation 

even beyond that of nonirradiated controls (Figure 4D).  There was a significant 

increase in contractions evoked by electrical field stimulation (20 Hz) in hRLX2 treated 

preparations.  Contractions evoked by muscarinic agonist, oxotremorine-M, and high 

KCl were not significantly different between groups.  Additionally, there was increased 

expression of detrusor Cav1.2 (Figure 4F), the primary Cav1.2α1C subunit that encodes 

for the L-type Ca2+ channel, responsible for detrusor contraction. 

Urothelial loss and bladder collagen deposition in chronic radiation cystitis 

contribute to LUT dysfunction.  Bladder sections stained with Van Gieson solution 

showed urothelial layer disruption, increased collagen content (intense pink staining) 

and significant muscle damage nine weeks post injury (Figure 4H) compared to age 

matched controls (Figure 4G).  In contrast, mice receiving hRLX2 treatment showed a 

return of the urothelial layer and normal collagen and smooth muscle architecture 

(Figure 4I) that is indifferent from nonirradiated controls.  Quantification of collagen to 

total tissue area ratio showed a significant increase in collagen content of irradiated 

mouse bladders which was reversed by hRLX2 treatment to a level comparable to 

nonirradiated controls (Figure 4J). 

The hRLX2 receptors, RXFP1 and RXFP2 are expressed in mouse bladders.  

Immunofluorescence analysis of normal female mouse bladder sections demonstrates 

that the receptors for hRLX2, RXFP1/2 are expressed in the detrusor layer, with RXFP2 

being the dominant subtype (Figure 5A and B, green - RXFP, red - smooth muscle 

actin, blue – DAPI nuclear stain, Figure 5C – negative control without the primary 



antibody).  Confirmation of immunofluorescence findings by Western blot analysis 

(Figure 5D) supports that there is direct action of hRLX2 on bladder smooth muscle 

and, possibly, myofibroblasts in the mouse bladder - positive controls for RXFP1 and 

RXFP2 in uterus and prostate are also shown. Expression of RXFP1 and RXFP2 in the 

bladder was also demonstrated by RT-qPCR, with expression in detrusor higher than in 

mucosa (Figure 5E). 

Measurements of endogenous and exogenously administered relaxin in mouse 

plasma.  Supplemental Figure 10 shows our data on the: 1) measurements of 

endogenous mouse relaxin-1 (mRLX1; the homologue to hRLX2) plasma levels in 

control male, female and pregnant mice; 2) continuous subcutaneous infusion of hRLX2 

produced a dose-dependent increase in plasma levels of hRLX2.  The plasma levels of 

hRLX2 measured in the mouse group receiving 50 µg/kg/day were equivalent to the 

levels of hRLX2 in human pregnancy27 and mRLX1 detected at day 10 of gestation.  

Chronic infusion at 400 µg/kg/day by day 7 raised the plasma levels to 17.5 ng/mL in 

non-pregnant female mice, which is approximately 10 times higher than E10 pregnant 

mice27.  These levels were stable for the rest of the treatment period (up to 14 days). 

 

Discussion 

Fibrosis has been implicated as a central mechanism in a wide variety of 

pathologies including LUT dysfunction secondary to chronic inflammation that leads to 

urinary retention2,3.  This has a substantial effect on the quality of life and has severe 

health implications including the potential for development of progressive renal 

dysfunction.  As such, patients may need to use intermittent self-catheterization and, in 



severe cases, undergo a cystectomy, as there are presently no effective therapies that 

reverse fibrosis.  Anti-fibrotic therapy would have clear benefits not only in radiation 

cystitis, but also in other fibrosis-driven bladder dysfunctions, including neurogenic 

bladder and outlet obstruction. 

The present study leveraged the findings of earlier reports to investigate the 

therapeutic benefits from sustained infusion of exogenous hRLX2 in a diseased mouse 

model without deleting endogenous relaxin.  We found that subcutaneous infusion of 

hRLX2 (400 µg/kg/day for 14 days), reversed the fibrosis (Figure 4G-J), increased 

bladder compliance (Figure 2) and force generation (Figure 4) to restore bladder 

function in our mouse model of chronic radiation cystitis.  Sustained plasma levels are 

necessary for inducing genomic changes in the LUT organs, just as maternal 

physiological adaptions in pregnancy are mediated by a sustained plasma elevation in 

the level of endogenous relaxin28.  Our findings demonstrate that a sustained rise in 

plasma levels of relaxin is a key determinant for deriving therapeutic benefits in 

reversing the fibrosis in non-pregnant female mice because direct application of hRLX2 

was devoid of any discernible effect on contractility of bladder strips (data not shown).  

Therefore, we choose the regimen of chronic administration for the present study.  From 

previous reports, 400 μg/kg/day was the minimum dose needed to prevent and reduce 

fibrosis in various models29.  hRLX2 may also prevent recurrent inflammation potentially 

via inhibition of immune cell activation30.  We propose that hRLX2 acts via G-protein 

coupled RXFP1/2, causing transient elevations of cAMP and cGMP, via a NOS 

dependent pathway, activation of kinases and transcription factors that lead to anti-



inflammatory, vasodilatory, anti-oxidative and antifibrotic properties to reverse fibrosis 

(Figure 1C). 

The high active tension in hRLX2 treated irradiated mice compared to control 

suggests that hRLX2 likely shifts the increased nitric oxide (NO) signaling in irradiated 

mice away from the proapoptotic/profibrotic pathway towards NO-dependent/cGMP 

signaling, which promotes collagen degrading gelatinase activity.  The contractile 

strength of detrusor smooth muscles is further increased as indicated by the increased 

EFS responses that may result from genomic changes in the expression of Cav1.231. 

 

Conclusion 

These studies, although pre-clinical with transferability to the human system yet 

to be determined, demonstrate the therapeutic potential of hRLX2 in treating LUT 

pathologies due to radiation cystitis.  Relaxin is a natural hormone which has passed 

human safety tests in clinical trials, increases Cav1.2 expression to improve detrusor 

contractility, arrests collagen deposition and reverses fibrosis to increase bladder 

compliance.  
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Figure 1.  Structure of hRLX2, hypothetical pathway intermediates of RXFP1/2 and the 

benefits of hRLX2 therapy in radiation cystitis.  A, B. The α-chain of hRLX2 can bind to 

RXFP1/2 receptors located on detrusor smooth muscle to increase cAMP levels and the 

expression of CaV1.2 (potentially via inhibition of RhoA activity) resulting in 

enhancement of force generation.  hRLX2-mediated cAMP generation in the bladder 

vasculature may also increase Akt phosphorylation, platelet derived growth factor 

(PDGF) and vascular endothelial growth factor (VEGF) expression to promote 

angiogenesis.  The β-chain of hRLX2 can interact with RXFP1 to selectively stimulate 

pERK1/2 pathways upregulating nNOS and cGMP levels.  This leads to decreased 

collagen synthesis and tissue inhibitors of matrix metalloproteases (TIMP), and 

increased matrix metalloprotease (MMP) expression to reverse fibrosis in the ECM.  C. 

One of the initial responses following radiation exposure is inflammation due to 

urothelial apoptosis and urine infiltration.  Concurrently, there is damage to the vascular 

endothelium leading to ischemia.  These processes cause increased collagen 

deposition, and decreased bladder compliance and force generation.  Treatment with 

hRLX2 reverses fibrosis through inhibition of collagen synthesis and enhancement of its 

degradation by MMPs.  It also enhances contractile function through increased Cav1.2 

(i.e., L-type Ca2+ channel) expression and improved tissue perfusion via NO induced 

vasodilation.  hRLX2 is also anti-inflammatory, inhibiting recurrent damage to the 

bladder wall. 

 
Figure 2.  Bladder cystometrograms (CMGs) and external urethral sphincter (EUS) 

electromyograms (EMGs) from irradiated mice with and without hRLX2 treatment.  A. 

Method for selective irradiation of the urinary bladder.  B-E. CMGs/EUS-EMGs in 

decerebrated mice.  B. Control, nonirradiated mouse.  C. Nonirradiated mouse treated 

with hRLX2 (400 μg/kg/day) for 2 weeks.  D. Irradiated mouse with saline infusion via a 

subcutaneous osmotic pump for two weeks.  E. Irradiated mouse with hRLX2 infusion 

(400 µg/kg/day) via a subcutaneous osmotic pump for two weeks.  Treatment in D and 

E commenced seven weeks after irradiation.  hRLX2 treated mice exhibited more 

efficient voiding, longer intercontractile intervals, higher bladder compliances and a 

normalized EUS activity. 



Figure 3.  Urine spot test samples of irradiated mice with and without hRLX2 treatment.  

hRLX2 did not have significant effect on mouse voiding behavior. Chronic irradiated 

mice (12 weeks post irradiation) were incontinent and exhibited urine leakage (multiple 

small spots) with decreased voided volumes.  hRLX2 increased voided volumes and 

decreased the number of spots, restoring continence and normal bladder function (see 

also Supplemental Figure 8). 

 
Figure 4.  Passive properties, bladder wall compliance, detrusor contractility and 

collagen content changes in chronic radiation cystitis and its reversal by hRLX2 

treatment.  A. The bladders were isolated at one, two, four, six and nine weeks post-

irradiation and contractile function was measured in organ bath experiments.  Passive 

tension profiles (an indicator of tissue stiffness) showed significant increases at six to 

nine weeks post irradiation.  B. Passive tension recorded in Ca2+-free Tyrode’s solution 

demonstrated that hRLX2 decreased tension generation, compared to saline treated 

irradiated mice, suggesting that this effect was due to changes in the elastic properties 

of the bladder and not smooth muscle relaxation. C-E.  At nine weeks post irradiation, 

mouse bladders showed increased passive tension and decreased active force 

generation (red traces) compared to nonirradiated mice (green traces).  Two weeks 

treatment with hRLX2 (subcutaneous, 400 µg/kg/day) commenced 7 week post 

irradiation resulted in a passive tension profile similar to nonirradiated controls and 

increased contractile responses to EFS (blue traces and bars). F. The expression of L-

type Ca2+ channels (Cav1.2) increased following hRLX2 treatment.  G. Van Gieson 

staining of control mouse bladder sections. H. Sections from irradiated bladders showed 

denuding of the UT and significant collagen staining in the lamina propria (LP) and 

throughout the detrusor.  I. Mice treated with hRLX2 showed a decrease in bladder 

collagen content that was comparable to nonirradiated mice and an intact urothelial 

layer.  J. Collagen:tissue ratio was analyzed using ImageJ. 
 
Figure 5.  Expression of hRLX2 receptors, RXFP1 and RXFP2, in mouse bladders. 

Immunofluorescence analysis of RXFP1/2 in the female C57Bl/6 mouse bladders 

showed that these receptors are expressed on the detrusor smooth muscle (RXFP1/2, 



1:500 dilution – green, smooth muscle actin – red, DAPI nuclear stain – blue), with little 

expression in the lamina propria (LP) and urothelium (UT).  The expression of RXFP1 

(A) was less robust than RXFP2 (B) in histological sections and western blot analysis 

(D), negative controls are in (C) and positive controls for uterus and prostate (D); E. RT-

qPCR analysis confirmed the expression of RXFP1 and RXFP2 in the mouse bladder, 

with expression in detrusor higher than in mucosa. 
 
Supplemental Figures: 
Figure 6. CMG parameters from nonirradiated and irradiated mice with and without 

hRLX2 treatment. 

 

Figure 7. EUS-EMG parameters from nonirradiated, and irradiated mice with and 

without hRLX2 treatment. 

 

Figure 8. Spot test data analysis. Number of spots and total volume voided during the 

test of control, nonirradiated mice, irradiated mice 2 and 12 weeks following irradiation 

and 12 weeks following irradiation with hRLX2 treatment. 

 

Figure 9. Calibration of urine spot sizes to volumes of urine voided. Spots of 10, 40, 50, 

60 and 70 μl were pipetted onto the Whatman paper, spot size analyzed, and a 

calibration curve built where linear relation was confirmed with R2 = 0.9975. 
 
Figure 10.  Endogenous mRLX and exogenous hRLX2 plasma levels from mice. 

 
Figure 11. Antibodies used for western blot and immunofluorescence. 
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CMG Parameters PT, 
cmH2O

MVP, cmH2O BP, cmH2O ICI, sec BC, μl/cmH2O VV, μl RV, μl

Nonirradiated 12.0 ± 2.4 29.4 ± 5.1 3.1 ± 1.0 723 ± 187 25.2 ± 6.3 101 ± 10 11 ± 10

Nonirradiated + 
relaxin 7.2 ± 0.6 22.8 ± 4.0 3.1 ± 0.3 805 ± 168 32.8 ± 0.4 122 ± 11 9 ± 6

Radiation cystitis + 
saline 17.1 ± 0.1* 18.9 ± 1.3 11.6 ± 3.7** 136 ± 84** 4.3 ± 0.2* 30 ± 16** 27 ± 14

Radiation cystitis + 
relaxin 8.3 ± 2.3 25.0 ± 7.1 3.2 ± 0.9 537 ± 249 24.8 ± 14.7 98 ± 43 11 ± 14

PT, pressure threshold; MVP, maximal voiding pressure; BP, baseline pressure; ICI, inter contractile interval; BC, bladder compliance; VV, voided
volume; RV, residual volume. * - p < 0.01 vs. control and radiation cystitis with relaxin; ** - p < 0.05 vs. control and radiation cystitis with relaxin.

Supplemental 
Figure 6 



EMG Parameters contraction 
duration, sec

voiding duration, 
sec burst number burst/sec

Nonirradiated 16.4 ± 1.8 4.1 ± 2.0 12 ± 6 3.0 ± 0.8

Nonirradiated + hRLX2 13.4 ± 3.8 2.4 ± 0.5 10 ± 3 4.3 ± 1.0

Radiation cystitis + saline 173 ± 16* 29 ± 6* Not applicable Not applicable 

Radiation cystitis + hRLX2 21.22 ± 11.1 6.5 ± 4.9 17 ± 6 3.4 ± 1.3

(* -- p < 0.01 compared to non-irradiated and radiation cystitis with relaxin)

Supplemental 
Figure 7 



Spot Test  Data number of 
spots total volume, μl

nonirradiated 1.3 ± 0.6 281 ± 31

2 wks irrad 8 ± 1 259 ± 39

12 wks irrad 14 ± 4 124 ± 14

12 wks irrad + 50 μg/kg/day 
RLX 4 ± 1 271 ± 27

12 wks irrad + 400 μg/kg/day 
RLX 1.5 ± 0.7 296 ± 27

Supplemental 
Figure 8 
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Relaxin source hRLX2 or mRLX1

control mouse mRLX1

pregnant female
(E10; highest levels) 1.4 ng/ml

female 0.3 ng/ml

male 0.1 ng/ml

female mice with 
subcutaneous pumps with 

hRLX2

saline in pump 0.007 ng/ml

50 μg/kg/day/14 days 1.5 ng/ml

100 μg/kg/day/14 days 3.1 ng/ml

400 μg/kg/day/7 days 17.9 ng/ml

400 μg/kg/day/11 days 16.8 mg/ml

400 μg/kg/day/14 days 17.5 ng/ml

Alzet pump

Supplemental 
Figure 10 



Supplemental 
Figure 11 

Antibody Host Concentration Company Catalog number

RXFP1 Rabbit WB: 1:10,00
IF: 1:1,000 Santa Cruz sc-50328

RXFP2 Goat WB: 1:10,00
IF: 1:1,000 Santa Cruz sc-22017

α-smooth muscle actin Mouse IF: 1:500 Abcam AB7817
Cav1.2 Rabbit IF: 1:500 Alomone labs ACC-003

Anti-rabbit Alexaflor 488 Donkey IF: 1:500 Life Technologies A-21206
Anti-rabbit Alexaflor 594 Donkey IF: 1:500 Life Technologies A21207
Anti-goat Alexaflor 488 Donkey IF: 1:500 Life Technologies A11055

Anti-mouse
Alexaflor 594 Donkey IF: 1:500 Life Technologies R37115

Anti-rabbit horse radish 
peroxidase conjugate 

IgG
Donkey WB: 1:2000 GE Healthcare NA934V

Anti-goat horseradish 
peroxidase conjugate 

IgG
Donkey WB: 1:2000 Novex A16005
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