642 research outputs found

    Sub-Pixel Response Measurement of Near-Infrared Sensors

    Get PDF
    Wide-field survey instruments are used to efficiently observe large regions of the sky. To achieve the necessary field of view, and to provide a higher signal-to-noise ratio for faint sources, many modern instruments are undersampled. However, precision photometry with undersampled imagers requires a detailed understanding of the sensitivity variations on a scale much smaller than a pixel. To address this, a near-infrared spot projection system has been developed to precisely characterize near-infrared focal plane arrays and to study the effect of sub-pixel non uniformity on precision photometry. Measurements of large format near-infrared detectors demonstrate the power of this system for understanding sub-pixel response.Comment: 9 pages, 13 figures, submitted to PAS

    The Longitudinal Polarimeter at HERA

    Get PDF
    The design, construction and operation of a Compton back-scattering laser polarimeter at the HERA storage ring at DESY are described. The device measures the longitudinal polarization of the electron beam between the spin rotators at the HERMES experiment with a fractional systematic uncertainty of 1.6%. A measurement of the beam polarization to an absolute statistical precision of 0.01 requires typically one minute when the device is operated in the multi-photon mode. The polarimeter also measures the polarization of each individual electron bunch to an absolute statistical precision of 0.06 in approximately five minutes. It was found that colliding and non-colliding bunches can have substantially different polarizations. This information is important to the collider experiments H1 and ZEUS for their future longitudinally polarized electron program because those experiments use the colliding bunches only.Comment: 21 pages (Latex), 14 figures (EPS

    Improving IBD diagnosis and monitoring by understanding preanalytical, analytical and biological fecal calprotectin variability

    Get PDF
    BACKGROUND: The appropriate clinical use of fecal calprotectin (fCal) might be compromised by incomplete harmonization between assays and within- and between-subjects variability. Our aim was to investigate the analytical and biological variability of fCal in order to provide tools for interpreting fCal in the clinical setting. METHODS: Experiments were conducted to investigate the effects of temperature and storage time on fCal. Thirty-nine controls were enrolled to verify biological variability, and a case-control study was conducted on 134 controls and 110 IBD patients to compare the clinical effectiveness of three different fCal assays: ELISA, CLIA and turbidimetry. RESULTS: A 12% decline in fCal levels was observed within 24 h following stool collection irrespective of storage temperature. Samples were unstable following a longer storage time interval at room temperature. Within- and between-subjects fCal biological variability, at 31% and 72% respectively, resulted in a reference change value (RCV) in the region of 100%. fCal sensitivity in distinguishing between controls and IBD patients is satisfactory (68%), and the specificity high (93%) among young (<65 years), but not among older ( 6565 years) subjects (ROC area: 0.584; 95% CI: 0.399-0.769). Among the young, assays have different optimal thresholds (120 \u3bcg/g for ELISA, 50 \u3bcg/g for CLIA and 100 \u3bcg/g for turbidimetry). CONCLUSIONS: We recommend a standardized preanalytical protocol for fCal, avoiding storage at room temperature for more than 24 h. Different cutoffs are recommended for different fCal assays. In monitoring, the difference between two consecutive measurements appears clinically significant when higher than 100%, the fCal biological variability-derived RCV

    Estimation of Combinatoric Background in SeaQuest using an Event-Mixing Method

    Full text link
    All experiments observing dilepton pairs (e.g. e+ee^+e^-, μ+μ\mu^+\mu^-) must confront the existence of a combinatoric background caused by the combining of tracks not arising from the same physics vertex. Some method must be devised to calculate and remove this background. In this document we describe a particular event-mixing method relying on many of the unique aspects of the SeaQuest spectrometer and data. The method described here calculates the combinatoric background with correct normalization; i.e., there is no need to assign a floating normalization factor that is then determined in a subsequent fitting procedure. Numerous tests are applied to demonstrate the reliability of the method.Comment: Submitted to JINST; revised due to second round of referee comment

    The proton and deuteron F_2 structure function at low Q^2

    Get PDF
    Measurements of the proton and deuteron F2F_2 structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range 0.06<Q2<2.80.06 < Q^2 < 2.8 GeV2^2, and Bjorken xx values from 0.009 to 0.45, thus extending the knowledge of F2F_2 to low values of Q2Q^2 at low xx. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for Q2<2Q^2<2 GeV2^2 at the low and high xx-values. Down to the lowest value of Q2Q^2, the structure function is in good agreement with a parameterization of F2F_2 based on data that have been taken at much higher values of Q2Q^2 or much lower values of xx, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low xx remains well described by a logarithmic dependence on Q2Q^2 at low Q2Q^2.Comment: 3 figures, submitted pape

    Flavor decomposition of the sea quark helicity distributions in the nucleon from semi-inclusive deep-inelastic scattering

    Full text link
    Double-spin asymmetries of semi-inclusive cross sections for the production of identified pions and kaons have been measured in deep-inelastic scattering of polarized positrons on a polarized deuterium target. Five helicity distributions including those for three sea quark flavors were extracted from these data together with re-analyzed previous data for identified pions from a hydrogen target. These distributions are consistent with zero for all three sea flavors. A recently predicted flavor asymmetry in the polarization of the light quark sea appears to be disfavored by the data.Comment: 5 pages, 3 figure

    Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface

    Full text link
    The nuclear polarization of H2\mathrm{H}_2 molecules formed by recombination of nuclear polarized H atoms on the surface of a storage cell initially coated with a silicon-based polymer has been measured by using the longitudinal double-spin asymmetry in deep-inelastic positron-proton scattering. The molecules are found to have a substantial nuclear polarization, which is evidence that initially polarized atoms retain their nuclear polarization when absorbed on this type of surfac
    corecore