4 research outputs found

    Current Status and Emerging Trends in Colorectal Cancer Screening and Diagnostics

    Get PDF
    Colorectal cancer (CRC) is a prevalent and potentially fatal disease categorized based on its high incidences and mortality rates, which raised the need for effective diagnostic strategies for the early detection and management of CRC. While there are several conventional cancer diagnostics available, they have certain limitations that hinder their effectiveness. Significant research efforts are currently being dedicated to elucidating novel methodologies that aim at comprehending the intricate molecular mechanism that underlies CRC. Recently, microfluidic diagnostics have emerged as a pivotal solution, offering non-invasive approaches to real-time monitoring of disease progression and treatment response. Microfluidic devices enable the integration of multiple sample preparation steps into a single platform, which speeds up processing and improves sensitivity. Such advancements in diagnostic technologies hold immense promise for revolutionizing the field of CRC diagnosis and enabling efficient detection and monitoring strategies. This article elucidates several of the latest developments in microfluidic technology for CRC diagnostics. In addition to the advancements in microfluidic technology for CRC diagnostics, the integration of artificial intelligence (AI) holds great promise for further enhancing diagnostic capabilities. Advancements in microfluidic systems and AI-driven approaches can revolutionize colorectal cancer diagnostics, offering accurate, efficient, and personalized strategies to improve patient outcomes and transform cancer management

    Ginseng in Hair Growth and Viability

    Get PDF
    The hair follicle is the unique organ that has the capacity of undergoing cyclic transformations following periods of growth (anagen), regression (catagen), and rest (telogen) regenerating itself to restart the cycle. The dynamic capacity of hair to growth and rest enables mammals to control hair growth and length in different body side and to change their coats. Unlike what is observed in many animals in which the pelage synchronously passes from one phase of the cycle to other all stages of growth cycle are simultaneously found in the human pelage, the growth pattern is a mosaic where the hair cycling staging of one hair root is completely independent of it nearest hair follicle, meaning that each follicular unit (FU) can contain follicles in different stages at any given time. A variety of factors, such as nutritional status, hormones, exposure to radiations, chemotherapy or radiotherapy, environmental pollution or drugs may affect hair growth, and affects the number of hairs, this progressive hair loss has a cosmetic and social impact that often significantly affects social and psychological well-being of the patient that suffers from this hair loss. Although a number of therapies, such as finasteride and minoxidil, are approved medications, a wide variety of classes of phytochemicals and natural products, including those present in ginseng are being testing. The purpose of this chapter is to focus on study the potential of ginseng and its metabolites in hair loss

    Innovative Biosensing Approaches for Swift Identification of Candida Species, Intrusive Pathogenic Organisms

    Get PDF
    Candida is the largest genus of medically significant fungi. Although most of its members are commensals, residing harmlessly in human bodies, some are opportunistic and dangerously invasive. These have the ability to cause severe nosocomial candidiasis and candidemia that affect the viscera and bloodstream. A prompt diagnosis will lead to a successful treatment modality. The smart solution of biosensing technologies for rapid and precise detection of Candida species has made remarkable progress. The development of point-of-care (POC) biosensor devices involves sensor precision down to pico-/femtogram level, cost-effectiveness, portability, rapidity, and user-friendliness. However, futuristic diagnostics will depend on exploiting technologies such as multiplexing for high-throughput screening, CRISPR, artificial intelligence (AI), neural networks, the Internet of Things (IoT), and cloud computing of medical databases. This review gives an insight into different biosensor technologies designed for the detection of medically significant Candida species, especially Candida albicans and C. auris, and their applications in the medical setting
    corecore