38 research outputs found

    Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs:A Valid Platform for Functional Tests

    Get PDF
    : With the advent of human-induced pluripotent stem cells (hiPSCs) and differentiation protocols, methods to create in-vitro human-derived neuronal networks have been proposed. Although monolayer cultures represent a valid model, adding three-dimensionality (3D) would make them more representative of an in-vivo environment. Thus, human-derived 3D structures are becoming increasingly used for in-vitro disease modeling. Achieving control over the final cell composition and investigating the exhibited electrophysiological activity is still a challenge. Thence, methodologies to create 3D structures with controlled cellular density and composition and platforms capable of measuring and characterizing the functional aspects of these samples are needed. Here, we propose a method to rapidly generate neurospheroids of human origin with control over cell composition that can be used for functional investigations. We show a characterization of the electrophysiological activity exhibited by the neurospheroids by using micro-electrode arrays (MEAs) with different types (i.e., passive, C-MOS, and 3D) and number of electrodes. Neurospheroids grown in free culture and transferred on MEAs exhibited functional activity that can be chemically and electrically modulated. Our results indicate that this model holds great potential for an in-depth study of signal transmission to drug screening and disease modeling and offers a platform for in-vitro functional testing

    Post-exposure rate of tuberculosis infection among health care workers measured with tuberculin skin test conversion after unprotected exposure to patients with pulmonary tuberculosis: 6-year experience in an Italian teaching hospital

    Get PDF
    BACKGROUND: This study assesses the risk of LTBI at our Hospital among HCWs who have been exposed to TB patients with a delayed diagnosis and respiratory protection measures were not implemented. METHODS: All HCWs exposed to a patient with cultural confirmed pulmonary TB and respiratory protection measures were not implemented were included. Data on TST results performed in the past (defined as T0) were recorded. TST was performed twice: first, immediately after exposure to an index patient (T1) and three months later (T2). The period of time between T0 and T1 was used to calculate he annual rate of tuberculosis infection (ARTI), while le period of time between T1 and T2 was used to calculate the post exposure annual rate of tuberculosis infection (PEARTI). RESULTS: Fourteen index patients were admitted; sputum smear was positive in 7 (58.3%), 4 (28.6%) were non-Italian born patients. 388 HCWs were exposed to index patients, a median of 27 (12-39) HCW per each index patient. One hundred eighty (46.4%) HCWs received BCG in the past. One hundred twenty two HCWs (31%) were TST positive at a previous routine screening and not evaluated in this subset. Among the remaining 255 HCWs with negative TST test in the past, TST at T1 was positive in 11 (4.3%). ARTI was 1.6 (95% CI 0.9-2.9) per 100 PY. TST at T2 was positive in 9 (3.7%) HCWs, that were TST negative at T1. PEARTI was 26 (95% CI 13.6-50) per 100 PY. At univariate analysis, older age was associated with post exposure latent tuberculosis infection (HR 1.12; 95% CI 1.03-1.22, p=0.01). CONCLUSIONS: PEARTI was considerably higher among HCWs exposed to index patients than ARTI. These data underscore the overwhelming importance of performing a rapid diagnosis, as well as implementing adequate respiratory protection measures when TB is suspected

    Lipid Cubic Mesophases Combined with Superparamagnetic Iron Oxide Nanoparticles: A Hybrid Multifunctional Platform with Tunable Magnetic Properties for Nanomedical Applications

    Get PDF
    Hybrid materials composed of superparamagnetic iron oxide nanoparticles (SPIONs) and lipid self-assemblies possess considerable applicative potential in the biomedical field, specifically, for drug/nutrient delivery. Recently, we showed that SPIONs-doped lipid cubic liquid crystals undergo a cubic-to-hexagonal phase transition under the action of temperature or of an alternating magnetic field (AMF). This transition triggers the release of drugs embedded in the lipid scaffold or in the water channels. In this contribution, we address this phenomenon in depth, to fully elucidate the structural details and optimize the design of hybrid multifunctional carriers for drug delivery. Combining small-angle X-ray scattering (SAXS) with a magnetic characterization, we find that, in bulk lipid cubic phases, the cubic-to-hexagonal transition determines the magnetic response of SPIONs. We then extend the investigation from bulk liquid-crystalline phases to colloidal dispersions, i.e., to lipid/SPIONs nanoparticles with cubic internal structure (“magnetocubosomes”). Through Synchrotron SAXS, we monitor the structural response of magnetocubosomes while exposed to an AMF: the magnetic energy, converted into heat by SPIONs, activates the cubic-to-hexagonal transition, and can thus be used as a remote stimulus to spike drug release “on-demand”. In addition, we show that the AMF-induced phase transition in magnetocubosomes steers the realignment of SPIONs into linear string assemblies and connect this effect with the change in their magnetic properties, observed at the bulk level. Finally, we assess the internalization ability and cytotoxicity of magnetocubosomes in vitro on HT29 adenocarcinoma cancer cells, in order to test the applicability of these smart carriers in drug delivery applications

    Lack of SARS-CoV-2 RNA environmental contamination in a tertiary referral hospital for infectious diseases in Northern Italy

    Get PDF
    none140noNAnoneColaneri M.; Seminari E.; Piralla A.; Zuccaro V.; Di Filippo A.; Baldanti F.; Bruno R.; Mondelli M.U.; Brunetti E.; Di Matteo A.; Maiocchi L.; Pagnucco L.; Mariani B.; Ludovisi S.; Lissandrin R.; Parisi A.; Sacchi P.; Patruno S.F.A.; Michelone G.; Gulminetti R.; Zanaboni D.; Novati S.; Maserati R.; Orsolini P.; Vecchia M.; Sciarra M.; Asperges E.; Sambo M.; Biscarini S.; Lupi M.; Roda S.; Chiara Pieri T.; Gallazzi I.; Sachs M.; Valsecchi P.; Perlini S.; Alfano C.; Bonzano M.; Briganti F.; Crescenzi G.; Giulia Falchi A.; Guarnone R.; Guglielmana B.; Maggi E.; Martino I.; Pettenazza P.; Pioli di Marco S.; Quaglia F.; Sabena A.; Salinaro F.; Speciale F.; Zunino I.; De Lorenzo M.; Secco G.; Dimitry L.; Cappa G.; Maisak I.; Chiodi B.; Sciarrini M.; Barcella B.; Resta F.; Moroni L.; Vezzoni G.; Scattaglia L.; Boscolo E.; Zattera C.; Michele Fidel T.; Vincenzo C.; Vignaroli D.; Bazzini M.; Iotti G.; Mojoli F.; Belliato M.; Perotti L.; Mongodi S.; Tavazzi G.; Marseglia G.; Licari A.; Brambilla I.; Daniela B.; Antonella B.; Patrizia C.; Giulia C.; Giuditta C.; Marta C.; Rossana D.; Milena F.; Bianca M.; Roberta M.; Enza M.; Stefania P.; Maurizio P.; Elena P.; Antonio P.; Francesca R.; Antonella S.; Maurizio Z.; Guy A.; Laura B.; Ermanna C.; Giuliana C.; Luca D.; Gabriella F.; Gabriella G.; Alessia G.; Viviana L.; Claudia L.; Valentina M.; Simona P.; Marta P.; Alice B.; Giacomo C.; Irene C.; Alfonso C.; Di Martino R.; Di Napoli A.; Alessandro F.; Guglielmo F.; Loretta F.; Federica G.; Alessandra M.; Federica N.; Giacomo R.; Beatrice R.; Maria S.I.; Monica T.; Nepita Edoardo V.; Calvi M.; Tizzoni M.; Nicora C.; Triarico A.; Petronella V.; Marena C.; Muzzi A.; Lago P.; Comandatore F.; Bissignandi G.; Gaiarsa S.; Rettani M.; Bandi C.Colaneri, M.; Seminari, E.; Piralla, A.; Zuccaro, V.; Di Filippo, A.; Baldanti, F.; Bruno, R.; Mondelli, M. U.; Brunetti, E.; Di Matteo, A.; Maiocchi, L.; Pagnucco, L.; Mariani, B.; Ludovisi, S.; Lissandrin, R.; Parisi, A.; Sacchi, P.; Patruno, S. F. A.; Michelone, G.; Gulminetti, R.; Zanaboni, D.; Novati, S.; Maserati, R.; Orsolini, P.; Vecchia, M.; Sciarra, M.; Asperges, E.; Sambo, M.; Biscarini, S.; Lupi, M.; Roda, S.; Chiara Pieri, T.; Gallazzi, I.; Sachs, M.; Valsecchi, P.; Perlini, S.; Alfano, C.; Bonzano, M.; Briganti, F.; Crescenzi, G.; Giulia Falchi, A.; Guarnone, R.; Guglielmana, B.; Maggi, E.; Martino, I.; Pettenazza, P.; Pioli di Marco, S.; Quaglia, F.; Sabena, A.; Salinaro, F.; Speciale, F.; Zunino, I.; De Lorenzo, M.; Secco, G.; Dimitry, L.; Cappa, G.; Maisak, I.; Chiodi, B.; Sciarrini, M.; Barcella, B.; Resta, F.; Moroni, L.; Vezzoni, G.; Scattaglia, L.; Boscolo, E.; Zattera, C.; Michele Fidel, T.; Vincenzo, C.; Vignaroli, D.; Bazzini, M.; Iotti, G.; Mojoli, F.; Belliato, M.; Perotti, L.; Mongodi, S.; Tavazzi, G.; Marseglia, G.; Licari, A.; Brambilla, I.; Daniela, B.; Antonella, B.; Patrizia, C.; Giulia, C.; Giuditta, C.; Marta, C.; D'Alterio, Rossana; Milena, F.; Bianca, M.; Roberta, M.; Enza, M.; Stefania, P.; Maurizio, P.; Elena, P.; Antonio, P.; Francesca, R.; Antonella, S.; Maurizio, Z.; Guy, A.; Laura, B.; Ermanna, C.; Giuliana, C.; Luca, D.; Gabriella, F.; Gabriella, G.; Alessia, G.; Viviana, L.; Meisina, Claudia; Valentina, M.; Simona, P.; Marta, P.; Alice, B.; Giacomo, C.; Irene, C.; Alfonso, C.; Di Martino, R.; Di Napoli, A.; Alessandro, F.; Guglielmo, F.; Loretta, F.; Federica, G.; Albertini, Alessandra; Federica, N.; Giacomo, R.; Beatrice, R.; Maria, S. I.; Monica, T.; Nepita Edoardo, V.; Calvi, M.; Tizzoni, M.; Nicora, C.; Triarico, A.; Petronella, V.; Marena, C.; Muzzi, A.; Lago, P.; Comandatore, F.; Bissignandi, G.; Gaiarsa, S.; Rettani, M.; Bandi, C

    Clinical characteristics of coronavirus disease (COVID-19) early findings from a teaching hospital in Pavia, North Italy, 21 to 28 February 2020

    Get PDF
    We describe clinical characteristics, treatments and outcomes of 44 Caucasian patients with coronavirus disease (COVID-19) at a single hospital in Pavia, Italy, from 21\u201328 February 2020, at the beginning of the outbreak in Europe. Seventeen patients developed severe disease, two died. After a median of 6 days, 14 patients were discharged from hospital. Predictors of lower odds of discharge were age>65 years, antiviral treatment and for severe disease, lactate dehydrogenase >300 mg/dL

    Development of engineered human-derived brain-on-a-chip models for electrophysiological recording

    Get PDF
    The study of the central nervous system represents a great challenge in the field of neuroscience. For years, various techniques have been developed to study neuronal cells in-vitro as it is difficult to conduct in-vivo experiments due to ethical problems deriving from its anatomical location. Consequently, both in-vivo and in-vitro animal models have been used extensively to gain new insights into basic functioning principles of neuronal tissue and therapeutic approaches for brain diseases. Over time, we have seen that there is a poor correlation between the clinical diagnosis and the underlying pathological mechanisms. In fact, some symptoms that may occur in the patient are not replicated in the animal, making many promising approaches in animal studies not translatable in the clinic. With the advent of human-induced pluripotent stem cells (h-iPSC) several protocols for the generation of human-neuronal cells are becoming available for all laboratories. The importance of this technique lies in the opportunity to develop a human model derived directly from the patient: the patient's in-vitro cells will exhibit the same genetic and epigenetic modifications as the in-vivo cells. This has raised hopes for the generation of engineered brain models that can be coupled to sensors / actuators in order to better investigate their functional properties in-vitro (i.e. brain-on-a-chip). A reliable method for evaluating the functionality of neuronal cultures is the study of the spontaneous electrophysiological activity using microelectrode arrays (MEA). There are numerous studies in the literature that used h-iPSC on MEAs, showing the characterization of neuronal patterns of patient-derived cultures, demonstrating how this platform is valid for disease phenotyping, drug discovery and translational medicine. Although these models helped to shed light on fundamental biological mechanisms, the majority is based on two-dimensional neuronal cultures, which lack some key features to mimic in-vivo behavior. Three-dimensional h-iPSC-derived models possess a microenvironment, tissue architecture and potential to model network activity with greater complexity than two-dimensional models. Depending on the purpose of the study, we can choose different approaches to recreate 3D in-vitro brain, from those that aim to reproduce the trajectories of neurodevelopment (i.e. brain-organoids) to the use of synthetic materials that reproduce the functionalities of the extracellular matrix (ECM) (i.e. scaffold-based) (Chiaradia and Lancaster, 2020, Tang et al., 2006). Although h-iPSC-derived brain models summarize many aspects of network function in the human brain, they are subject to variability and still do not perfectly mimic behavior in-vivo. Therefore, to reach the full potential of this model we need improvements in differentiation methods and bioengineering, making these models engineered and reproducible. The aim of this PhD thesis was to implement different 3D neuronal culture generation methodologies that can be integrated on MEA devices to offer robust engineered platforms for functional studies

    Modeling postnatal hearing case finding within the Italian National Health System

    Get PDF
    Objective: Despite the successful implementation of newborn hearing screening (NHS), a debate is emerging as to what should be the best means of enabling timely diagnosis and intervention for preschoolers with educationally significant sensorineural or conductive hearing impairment (HI) missed at the time of NHS or occurred after birth. Our study aims to document the proportion and characteristics of HIs diagnosed in children in need of audiologic assessment, in order to outline the optimization areas of an operational framework for auditory surveillance during preschool age. Method: The referral routes and outcomes of 730 audiological assessments performed in 3 years within the framework of the early hearing identification program in Trieste (Italy) were retrospectively analyzed. Results: Among 570/595 completed evaluations, an HI was diagnosed in 114 children, 73.7% of which presenting an exclusively conductive HI due to middle ear effusion. HIs were found in 36/141 who failed NHS, and 60/385 preschoolers who were referred by the primary care pediatrician's surveillance activity during well-child visits, with diagnostic yield of 25.5 and 15.5%, respectively. Conclusion: Ongoing preschool surveillance in primary care setting integrated into a NHS program is feasible to conduct and may effectively identify HIs that missed NHS or were related with a risk factor. New triage instruments and protocols for immediate audiology referral could allow to obtain the diagnosis of educationally significant conductive and sensorineural HIs ahead of the development concern and in the same way reduce patient mobility, thus optimizing timing efficiency and economic impact of the program

    Brain-on-a-Chip: A Human 3D Model for Clinical Application

    No full text
    The main goal of this research is to design, develop and implement an efficient protocol to generate 3D neural cultures derived from human induced Pluripotent Stem Cells (hiPSCs) coupled to Micro Electrode Arrays (MEA) in order to obtain an engineered and controlled brain-on-a-chip model. The use of patient specific iPSCs may offer novel insights into the pathophysiology of a large variety of disorders, including numerous neurodevelopmental and late-onset neurodegenerative conditions. With these in vitro patient specific models, we may have the possibility to test drugs and find ad hoc therapies in the direction of precision medicine

    PRELIMINAR ANALYSIS OF ENGINEERED FUNCTIONALLY ACTIVE HUMAN DERIVED CORTICAL NEUROSPHEROIDS FOR DRUG SCREENING AND PRECISION MEDICINE

    No full text
    The continue development of differentiation protocols to generate human neural cells in vitro, allows more accurate investigations of the functional mechanisms arising in such complex networks, and generates great expectations for new treatments in neurodegenerative diseases for which effective therapies are not yet available. The use of 3D aggregates for neuropharmacological in vitro studies has shown great potentials and the advent of human patient specific in vitro models opens new avenues in the field of drug screening and precision medicine. Moreover, Neuronal Stem Cell (NSC) transplantation has the potential to revolutionize brain disease research, but still presents limitations that hamper the use in therapeutics. It has been shown how the injection of NSCs directly into the host, leads to a random integration into the tissue, while a targeted transplant is needed in the specific area affected by degeneration. An alternative approach would be to produce an already differentiated healthy 3D tissue, that shows all the functional and morphological features suitable for transplant into the degenerated area. To this end, we optimized a fast differentiation protocol to engineer excitatory cortical neurospheres with 1:1 ratio between neurons and astrocytes. We first evaluated its morphology by imaging and then we evaluated its functionality (i.e. electrophysiological activity) with glassbased 60 and CMOS-based 4096 micro-electrode arrays (MEAs). Our preliminary results show how the generated structures are viable and functionally active throughout their development. Furthermore, CMOS-MEAs revealed network properties that did not emerge from standard MEAs. Although the obtained results are preliminary, all neurospheroids adhered to substrates and developed functionally active neuritic arborizations, suggesting their efficient use for functional drugs screening applications and for future in vivo transplantation
    corecore