92 research outputs found
Relationship between NOX4 level and angiotensin II signaling in Gitelman's syndrome. Implications with hypertension
Recent evidence showed that endogenous nicotinamide adenine dinucleotide phosphate-oxidase 4 (NOX4) may exert a protective role on the cardiovascular system inducing vasodilation, reduction of blood pressure, and anti-proliferative actions. However, the functional significance of NOX4 in the cardiovascular system in humans remains elusive. Mononuclear cell levels of NOX4 were assessed by immunoblotting in 14 Gitelman's patients (GS), a unique human model of endogenous Ang II signaling antagonism and activation of anti-atherosclerotic and anti-remodeling defenses, and compared to 11 untreated essential hypertensive patients as well as to 11 healthy normotensive subjects. The association between NOX4 and its effector heme oxygenase (HO-1) (sandwich immunoassay) was also evaluated. NOX4 protein levels were decreased in hypertensive patients as compared to both GS and healthy subjects (1.06±0.31 AU vs. 1.76±0.54, P=0.002 and vs. 1.61±0.54, P=0.018, respectively). NOX4 protein level did not differ between GS and healthy subjects. HO-1 levels were increased in GS patients as compared to both hypertensive patients and healthy subjects (8.65±3.08 ng/ml vs 3.70±1.19, P<0.0001, and vs 5.49±1.04, P=0.008, respectively. NOX4 levels correlate with HO-1 levels only in GS (r(2)=0.63; P=0.001), (r(2)=0.088; P=ns, in hypertensive patients and r(2)=0.082; P=ns, in healthy subjects). Our findings show that NOX4 and its effector HO-1 are reduced in hypertensive patients compared to GS patients, a human model opposite to hypertension. Although the functional significance of NOX4 needs further clarification, our preliminary data in a unique human model of anti-atherosclerotic and anti-remodeling defenses activation, highlight the potentially protective role of NOX4 in the human cardiovascular system
Does p63RhoGEF, a new key mediator of angiotensin II signalling, play a role in blood pressure regulation and cardiovascular remodelling in humans?
Corresponding author: Lorenzo A Calo, Department of Clinical and Experimental Medicine, Clinica Medica 4, University of Padova, Via Giustiniani, 2 35128 Padova, Italy. Email: [email protected] Journal of the Renin-AngiotensinAldosterone System 12(4) 634 –636 © The Author(s) 2011 Reprints and permission: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/1470320311407232 jra.sagepub.com Letter to the Edito
Spontaneous Perforation of an Unknown Esophageal Diverticulum in a Hemodialysis Patient
Zenker's diverticulum is a rare disease, with an annual incidence of about 2 cases per 100000, occurring
most often in elderly men. No data are reported in dialysis patients. We report a case of a hemodialysis
patient who experienced a sudden spontaneous perforation of an unknown esophageal diverticulum. To our
knowledge, this is the first case reported in a hemodialysis patient. Its description could be helpful to
consider in such patients the possibility of the perforation of an esophageal diverticulum when typical
symptoms are referred in addition to the exclusion of other events with similar symptoms (acute esophagitis
and gastroduodenitis, perforated peptic ulcer, acute pancreatitis, myocardial infarction, pneumothorax,
dissecting aortic aneurysm)
Pathophysiology of Post Transplant Hypertension in Kidney Transplant: Focus on Calcineurin Inhibitors Induced Oxidative Stress and Renal Sodium Retention and Implications with RhoA/Rho Kinase Pathway.
Post-transplant hypertension is a common occurrence during treatment with calcineurin inhibitors (CNIs) in kidney transplant population. The pathogenesis of vasoconstriction induced by CNIs involves vascular tone alterations and kidney sodium transport regulation. Among the factors involved a key role is played by the activation of intrarenal renin-angiotensin system with enhanced release of Angiotensin II (Ang II) and increase of oxidative stress. A common pathway between oxidative stress and hypertension induced by CNIs may be identified in the involvement of the activation of RhoA/Rho kinase pathway, key for the induction of hypertension and cardiovascular-renal remodeling, of the oxidative stress mediated increased nitric oxide (NO) metabolism and increased renal sodium retention via increased activity of thiazide-sensitive sodium chloride cotransporter (NCC) in the distal tubule. We examined literature data including those coming from our group regarding the role of oxidative stress and sodium retention in CNIs induced hypertension and their involvement in cardiovascular-renal remodeling. Based on the available data, we have provided support to the activation of RhoA/Rho kinase pathway as an important effector in the pathophysiology of CNIs induced post-transplant hypertension via activation of oxidative stress and sodium retention. Clarification of how the biochemical and molecular mechanisms that regulate the processes involved in CNIs induced post transplant hypertension work and interact, would provide further insights not only into the comprehension of the pathophysiology of CNIs induced post transplant hypertension but could also have a positive impact on the clinical ground through the identification of significant targets. Their specific pharmacologic targeting might have multiple beneficial effects on the whole cardiovascular-renal function. The demonstration that in kidney transplanted patients with CNIs induced post-transplanted hypertension, the treatment of hypertension with different antihypertensive drugs inducing a comparable blood pressure reduction but different effects for example on oxidative stress and oxidative stress related proteins and/or Rho kinase and sodium retention, could be helpful for the choice of the antihypertensive treatment in these patients which takes advantage from effects of these drugs beyond blood pressure reduction
Inconsistent relationships among protection, benthic assemblage, habitat complexity and fish biomass in Mediterranean temperate rocky reefs
Marine Protected Areas (MPAs) have been proved to effectively protect and restore fish assemblages. There is mixed evidence regarding the effects of MPAs on benthic assemblages, habitat complexity, and how protection might mediate the effects of habitat features (including biotic and abiotic components) on fish assemblages, with very little information concerning temperate areas. Here, our aim is to assess how protection 1) influences benthic assemblages and habitat complexity, and 2) mediates the effects of habitat complexity on fishes. Using non-destructive methods (photosampling for shallow rocky benthic assemblages, and underwater visual census using strip transects for fish assemblages) to characterize benthic and fish assemblages, we sampled 15 Mediterranean locations, each including protected and unprotected sites. In all, we sampled 90 sites, and analyzed 2,760 photos and 800 replicated transects, gathering information on 44 benthic and 72 fish taxa. Abiotic, biotic and synthetic (i.e. combining the previous two) complexity indices have been computed to synthesize habitat features. Overall, whole benthic assemblages did not significantly differ between protected and unprotected conditions, but higher cover of the ecologically important erect algae belonging to the genus Cystoseira sensu lato was recorded within MPAs. Abiotic, biotic and synthetic complexity did not show clear patterns related to protection levels, displaying inconsistent responses between different locations. Our findings highlight that protection has a generally positive effect on fish biomass, this latter variable responding independently of the habitat complexity. Our study, in conclusion, confirms that MPAs can be effective to protect and restore rocky-reef assemblages, highlighting the need for more in-depth exploration of the mechanisms determining the different responses of benthic taxa to protection and how this can influence the associated fish assemblages
Environmental DNA effectively captures functional diversity of coastal fish communities.
Robust assessments of taxonomic and functional diversity are essential components of research programmes aimed at understanding current biodiversity patterns and forecasting trajectories of ecological changes. Yet, evaluating marine biodiversity along its dimensions is challenging and dependent on the power and accuracy of the available data collection methods. Here we combine three traditional survey methodologies (underwater visual census strip transects [UVCt], baited underwater videos [BUV] and small-scale fishery catches [SSFc]), and one novel molecular technique (environmental DNA metabarcoding [eDNA]-12S rRNA and cytochrome oxidase subunit 1 [COI]) to investigate their efficiency and complementarity in assessing fish diversity. We analysed 1,716 multimethod replicates at a basin scale to measure the taxonomic and functional diversity of Mediterranean fish assemblages. Taxonomic identities were investigated at species, genus and family levels. Functional identities were assessed using combinations of morphological, behavioural and trophic traits. We show that: (a) SSFc provided the higher taxonomic diversity estimates followed by eDNA, and then UVCt and BUV; (b) eDNA was the only method able to gather the whole spectrum of considered functional traits, showing the most functionally diversified and least redundant fish assemblages; and (c) the effectiveness of eDNA in describing functional structure reflected its lack of selectivity towards any considered functional trait. Our findings suggest that the reach of eDNA analysis stretches beyond taxon detection efficiency and provides new insights into the potential of metabarcoding in ecological studies
Parathyroid hormone and phosphate homeostasis in patients with Bartter and Gitelman syndrome:an international cross-sectional study
Background:Small cohort studies have reported high parathyroid hormone (PTH) levels in patients with Bartter syndrome and lower serum phosphate levels have anecdotally been reported in patients with Gitelman syndrome. In this cross-sectional study, we assessed PTH and phosphate homeostasis in a large cohort of patients with salt-losing tubulopathies. Methods:Clinical and laboratory data of 589 patients with Bartter and Gitelman syndrome were provided by members of the European Rare Kidney Diseases Reference Network (ERKNet) and the European Society for Paediatric Nephrology (ESPN). Results:A total of 285 patients with Bartter syndrome and 304 patients with Gitelman syndrome were included for analysis. Patients with Bartter syndrome type I and II had the highest median PTH level (7.5 pmol/L) and 56% had hyperparathyroidism (PTH >7.0 pmol/L). Serum calcium was slightly lower in Bartter syndrome type I and II patients with hyperparathyroidism (2.42 versus 2.49 mmol/L; P = .038) compared to those with normal PTH levels and correlated inversely with PTH (rs −0.253; P = .009). Serum phosphate and urinary phosphate excretion did not correlate with PTH. Overall, 22% of patients had low serum phosphate levels (phosphate—standard deviation score < −2), with the highest prevalence in patients with Bartter syndrome type III (32%). Serum phosphate correlated with tubular maximum reabsorption of phosphate/glomerular filtration rate (TmP/GFR) (rs 0.699; P < .001), suggesting renal phosphate wasting. Conclusions:Hyperparathyroidism is frequent in patients with Bartter syndrome type I and II. Low serum phosphate is observed in a significant number of patients with Bartter and Gitelman syndrome and appears associated with renal phosphate wasting.</p
- …