1,603 research outputs found

    Deterministic Walks in Quenched Random Environments of Chaotic Maps

    Full text link
    This paper concerns the propagation of particles through a quenched random medium. In the one- and two-dimensional models considered, the local dynamics is given by expanding circle maps and hyperbolic toral automorphisms, respectively. The particle motion in both models is chaotic and found to fluctuate about a linear drift. In the proper scaling limit, the cumulative distribution function of the fluctuations converges to a Gaussian one with system dependent variance while the density function shows no convergence to any function. We have verified our analytical results using extreme precision numerical computations.Comment: 18 pages, 9 figure

    A real Lorentz-FitzGerald contraction

    Get PDF
    Many condensed matter systems are such that their collective excitations at low energies can be described by fields satisfying equations of motion formally indistinguishable from those of relativistic field theory. The finite speed of propagation of the disturbances in the effective fields (in the simplest models, the speed of sound) plays here the role of the speed of light in fundamental physics. However, these apparently relativistic fields are immersed in an external Newtonian world (the condensed matter system itself and the laboratory can be considered Newtonian, since all the velocities involved are much smaller than the velocity of light) which provides a privileged coordinate system and therefore seems to destroy the possibility of having a perfectly defined relativistic emergent world. In this essay we ask ourselves the following question: In a homogeneous condensed matter medium, is there a way for internal observers, dealing exclusively with the low-energy collective phenomena, to detect their state of uniform motion with respect to the medium? By proposing a thought experiment based on the construction of a Michelson-Morley interferometer made of quasi-particles, we show that a real Lorentz-FitzGerald contraction takes place, so that internal observers are unable to find out anything about their `absolute ' state of motion. Therefore, we also show that an effective but perfectly defined relativistic world can emerge in a fishbowl world situated inside a Newtonian (laboratory) system. This leads us to reflect on the various levels of description in physics, in particular regarding the quest towards a theory of quantum gravity.Comment: 6 pages, no figures. Minor changes reflect published versio

    The Averaging Problem in Cosmology and Macroscopic Gravity

    Full text link
    The averaging problem in cosmology and the approach of macroscopic gravity to resolve the problem is discussed. The averaged Einstein equations of macroscopic gravity are modified on cosmological scales by the macroscopic gravitational correlation tensor terms as compared with the Einstein equations of general relativity. This correlation tensor satisfies a system of structure and field equations. An exact cosmological solution to the macroscopic gravity equations for a constant macroscopic gravitational connection correlation tensor for a flat spatially homogeneous, isotropic macroscopic space-time is presented. The correlation tensor term in the macroscopic Einstein equations has been found to take the form of either a negative or positive spatial curvature term. Thus, macroscopic gravity provides a cosmological model for a flat spatially homogeneous, isotropic Universe which obeys the dynamical law for either an open or closed Universe.Comment: 8 pages, LaTeX, ws-ijmpa.cls, few style and typo corrections. Based on the plenary talk given at the Second Stueckelberg Workshop, ICRANet Coordinating Center, Pescara, Italy, September 3-7, 2007. To appear in International Journal of Modern Physics A (2008

    Observation of light dragging in rubidium vapor cell

    Full text link
    We report on the experimental demonstration of light dragging effect due to atomic motion in a rubidium vapor cell. We found that the minimum group velocity is achieved for light red-shifted from the center of the atomic resonance, and that the value of this shift increases with decreasing group velocity, in agreement with the theoretical predictions by Kocharovskaya, Rostovtsev, and Scully [Phys. Rev. Lett. {\bf 86}, 628 (2001)].Comment: 4 pages 4 figures, submitted to PR

    Lorentzian regularization and the problem of point-like particles in general relativity

    Get PDF
    The two purposes of the paper are (1) to present a regularization of the self-field of point-like particles, based on Hadamard's concept of ``partie finie'', that permits in principle to maintain the Lorentz covariance of a relativistic field theory, (2) to use this regularization for defining a model of stress-energy tensor that describes point-particles in post-Newtonian expansions (e.g. 3PN) of general relativity. We consider specifically the case of a system of two point-particles. We first perform a Lorentz transformation of the system's variables which carries one of the particles to its rest frame, next implement the Hadamard regularization within that frame, and finally come back to the original variables with the help of the inverse Lorentz transformation. The Lorentzian regularization is defined in this way up to any order in the relativistic parameter 1/c^2. Following a previous work of ours, we then construct the delta-pseudo-functions associated with this regularization. Using an action principle, we derive the stress-energy tensor, made of delta-pseudo-functions, of point-like particles. The equations of motion take the same form as the geodesic equations of test particles on a fixed background, but the role of the background is now played by the regularized metric.Comment: 34 pages, to appear in J. Math. Phy

    Equations of motion according to the asymptotic post-Newtonian scheme for general relativity in the harmonic gauge

    Full text link
    The asymptotic scheme of post-Newtonian approximation defined for general relativity (GR) in the harmonic gauge by Futamase & Schutz (1983) is based on a family of initial data for the matter fields of a perfect fluid and for the initial metric, defining a family of weakly self-gravitating systems. We show that Weinberg's (1972) expansion of the metric and his general expansion of the energy-momentum tensor T{\bf T}, as well as his expanded equations for the gravitational field and his general form of the expanded dynamical equations, apply naturally to this family. Then, following the asymptotic scheme, we derive the explicit form of the expansion of T{\bf T} for a perfect fluid, and the expanded fluid-dynamical equations. (These differ from those written by Weinberg.) By integrating these equations in the domain occupied by a body, we obtain a general form of the translational equations of motion for a 1PN perfect-fluid system in GR. To put them into a tractable form, we use an asymptotic framework for the separation parameter η\eta , by defining a family of well-separated 1PN systems. We calculate all terms in the equations of motion up to the order η3\eta ^3 included. To calculate the 1PN correction part, we assume that the Newtonian motion of each body is a rigid one, and that the family is quasi-spherical, in the sense that in all bodies the inertia tensor comes close to being spherical as η0\eta \to 0. Apart from corrections that cancel for exact spherical symmetry, there is in the final equations of motion one additional term, as compared with the Lorentz-Droste (Einstein-Infeld-Hoffmann) acceleration. This term depends on the spin of the body and on its internal structure.Comment: 42 pages, no figure. Version accepted for publication in Physical Review

    On the Ginzburg-Landau Analysis of the Upper Critical Field Hc2 in MgB2

    Full text link
    Temperature dependence of the upper critical field Hc2 (T) for the superconducting magnesium diboride, MgB2, is studied in the vicinity of Tc by using a two-band Ginzburg-Landau (G-L) theory. The temperature dependence of Hc2 (T) near Tc exhibits a positive curvature. In addition, the calculated temperature dependence and its higher order derivatives are also shown to be in a good agreement with the experimental data. In analogy with the multi-band character of Eliashberg microscopic theory, the positive curvature of Hc2 (T) is described reasonably by solving the two-band of G-L theory.Comment: 14 pages, 2 figures, submitted to SUST November 200

    Gravitation, electromagnetism and the cosmological constant in purely affine gravity

    Full text link
    The Eddington Lagrangian in the purely affine formulation of general relativity generates the Einstein equations with the cosmological constant. The Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field, which has the form of the Maxwell Lagrangian with the metric tensor replaced by the symmetrized Ricci tensor, is dynamically equivalent to the Einstein-Maxwell Lagrangian in the metric formulation. We show that the sum of the two affine Lagrangians is dynamically inequivalent to the sum of the analogous Lagrangians in the metric-affine/metric formulation. We also show that such a construction is valid only for weak electromagnetic fields. Therefore the purely affine formulation that combines gravitation, electromagnetism and the cosmological constant cannot be a simple sum of terms corresponding to separate fields. Consequently, this formulation of electromagnetism seems to be unphysical, unlike the purely metric and metric-affine pictures, unless the electromagnetic field couples to the cosmological constant.Comment: 14 pages, extended and combined with gr-qc/0701176; published versio

    Critical dynamics of ballistic and Brownian particles in a heterogeneous environment

    Full text link
    The dynamic properties of a classical tracer particle in a random, disordered medium are investigated close to the localization transition. For Lorentz models obeying Newtonian and diffusive motion at the microscale, we have performed large-scale computer simulations, demonstrating that universality holds at long times in the immediate vicinity of the transition. The scaling function describing the crossover from anomalous transport to diffusive motion is found to vary extremely slowly and spans at least 5 decades in time. To extract the scaling function, one has to allow for the leading universal corrections to scaling. Our findings suggest that apparent power laws with varying exponents generically occur and dominate experimentally accessible time windows as soon as the heterogeneities cover a decade in length scale. We extract the divergent length scales, quantify the spatial heterogeneities in terms of the non-Gaussian parameter, and corroborate our results by a thorough finite-size analysis.Comment: 14 page
    corecore