731 research outputs found
Observation of light dragging in rubidium vapor cell
We report on the experimental demonstration of light dragging effect due to
atomic motion in a rubidium vapor cell. We found that the minimum group
velocity is achieved for light red-shifted from the center of the atomic
resonance, and that the value of this shift increases with decreasing group
velocity, in agreement with the theoretical predictions by Kocharovskaya,
Rostovtsev, and Scully [Phys. Rev. Lett. {\bf 86}, 628 (2001)].Comment: 4 pages 4 figures, submitted to PR
Lorentzian regularization and the problem of point-like particles in general relativity
The two purposes of the paper are (1) to present a regularization of the
self-field of point-like particles, based on Hadamard's concept of ``partie
finie'', that permits in principle to maintain the Lorentz covariance of a
relativistic field theory, (2) to use this regularization for defining a model
of stress-energy tensor that describes point-particles in post-Newtonian
expansions (e.g. 3PN) of general relativity. We consider specifically the case
of a system of two point-particles. We first perform a Lorentz transformation
of the system's variables which carries one of the particles to its rest frame,
next implement the Hadamard regularization within that frame, and finally come
back to the original variables with the help of the inverse Lorentz
transformation. The Lorentzian regularization is defined in this way up to any
order in the relativistic parameter 1/c^2. Following a previous work of ours,
we then construct the delta-pseudo-functions associated with this
regularization. Using an action principle, we derive the stress-energy tensor,
made of delta-pseudo-functions, of point-like particles. The equations of
motion take the same form as the geodesic equations of test particles on a
fixed background, but the role of the background is now played by the
regularized metric.Comment: 34 pages, to appear in J. Math. Phy
Minimal Stochastic Model for Fermi's Acceleration
We introduce a simple stochastic system able to generate anomalous diffusion
both for position and velocity. The model represents a viable description of
the Fermi's acceleration mechanism and it is amenable to analytical treatment
through a linear Boltzmann equation. The asymptotic probability distribution
functions (PDF) for velocity and position are explicitly derived. The diffusion
process is highly non-Gaussian and the time growth of moments is characterized
by only two exponents and . The diffusion process is anomalous
(non Gaussian) but with a defined scaling properties i.e. and similarly for velocity.Comment: RevTeX4, 4 pages, 2 eps-figures (minor revision
Experimental search for evidence of the three-nucleon force and a new analysis method
A research program with the aim of investigating the spin dependence of the
three-nucleon continuum in pd collisions at intermediate energies was carried
out at IUCF using the Polarized INternal Target EXperiments (PINTEX) facility.
In the elastic scattering experiment at 135 and 200 MeV proton beam energies a
total of 15 independent spin observables were obtained. The breakup experiment
was done with a vector and tensor polarized deuteron beam of 270 MeV and an
internal polarized hydrogen gas target. We developed a novel technique for the
analysis of the breakup observables, the sampling method. The new approach
takes into account acceptance and non-uniformities of detection efficiencies
and is suitable for any kinematically complete experiment with three particles
in the final state.Comment: Contribution to the 19th European Few-Body Conference, Groningen Aug.
23-27, 200
Advances in Li-Ion battery management for electric vehicles
This paper aims at presenting new solutions for advanced Li-Ion battery management to meet the performance, cost and safety requirements of automotive applications. Emphasis is given to monitoring and controlling the battery temperature, a parameter which dramatically affects the performance, lifetime, and safety of Li-Ion batteries. In addition to this, an innovative battery management architecture is introduced to facilitate the development and integration of advanced battery control algorithms. It exploits the concept of smart cells combined with an FPGA-based centralized unit. The effectiveness of the proposed solutions is shown through hardware-in-the-loop simulations and experimental results
Collisional perturbation of radio-frequency E1 transitions in an atomic beam of dysprosium
We have studied collisional perturbations of radio-frequency (rf)
electric-dipole (E1) transitions between the nearly degenerate opposite-parity
levels in atomic dysprosium (Dy) in the presence of 10 to 80 Torr of
H, N, He, Ar, Ne, Kr, and Xe. Collisional broadening and
shift of the resonance, as well as the attenuation of the signal amplitude are
observed to be proportional to the foreign-gas density with the exception of
H and Ne, for which no shifts were observed. Corresponding rates and cross
sections are presented. In addition, rates and cross sections for O are
extracted from measurements using air as foreign gas. The primary motivation
for this study is the need for accurate determination of the shift rates, which
are needed in a laboratory search for the temporal variation of the
fine-structure constant [A. T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R.
Torgerson, Phys. Rev. A \textbf{69}, 22105 (2004)].Comment: 11 pages, 8 figure
Constrained Dynamics of Universally Coupled Massive Spin 2-spin 0 Gravities
The 2-parameter family of massive variants of Einstein's gravity (on a
Minkowski background) found by Ogievetsky and Polubarinov by excluding lower
spins can also be derived using universal coupling. A Dirac-Bergmann
constrained dynamics analysis seems not to have been presented for these
theories, the Freund-Maheshwari-Schonberg special case, or any other massive
gravity beyond the linear level treated by Marzban, Whiting and van Dam. Here
the Dirac-Bergmann apparatus is applied to these theories. A few remarks are
made on the question of positive energy. Being bimetric, massive gravities have
a causality puzzle, but it appears soluble by the introduction and judicious
use of gauge freedom.Comment: 6 pages; Talk given at QG05, Cala Gonone (Italy), September 200
Maxwell equations in matrix form, squaring procedure, separating the variables, and structure of electromagnetic solutions
The Riemann -- Silberstein -- Majorana -- Oppenheimer approach to the Maxwell
electrodynamics in vacuum is investigated within the matrix formalism. The
matrix form of electrodynamics includes three real 4 \times 4 matrices. Within
the squaring procedure we construct four formal solutions of the Maxwell
equations on the base of scalar Klein -- Fock -- Gordon solutions. The problem
of separating physical electromagnetic waves in the linear space
\lambda_{0}\Psi^{0}+\lambda_{1}\Psi^{1}+\lambda_{2}\Psi^{2}+ lambda_{3}\Psi^{3}
is investigated, several particular cases, plane waves and cylindrical waves,
are considered in detail.Comment: 26 pages 16 International Seminar NCPC, May 19-22, 2009, Minsk,
Belaru
Maxwell Equations in Complex Form of Majorana - Oppenheimer, Solutions with Cylindric Symmetry in Riemann S_{3} and Lobachevsky H_{3} Spaces
Complex formalism of Riemann - Silberstein - Majorana - Oppenheimer in
Maxwell electrodynamics is extended to the case of arbitrary pseudo-Riemannian
space - time in accordance with the tetrad recipe of Tetrode - Weyl - Fock -
Ivanenko. In this approach, the Maxwell equations are solved exactly on the
background of static cosmological Einstein model, parameterized by special
cylindrical coordinates and realized as a Riemann space of constant positive
curvature. A discrete frequency spectrum for electromagnetic modes depending on
the curvature radius of space and three parameters is found, and corresponding
basis electromagnetic solutions have been constructed explicitly. In the case
of elliptical model a part of the constructed solutions should be rejected by
continuity considerations. Similar treatment is given for Maxwell equations in
hyperbolic Lobachevsky model, the complete basis of electromagnetic solutions
in corresponding cylindrical coordinates has been constructed as well, no
quantization of frequencies of electromagnetic modes arises.Comment: 39 page
Radiative damping: a case study
We are interested in the motion of a classical charge coupled to the Maxwell
self-field and subject to a uniform external magnetic field, B. This is a
physically relevant, but difficult dynamical problem, to which contributions
range over more than one hundred years. Specifically, we will study the
Sommerfeld-Page approximation which assumes an extended charge distribution at
small velocities. The memory equation is then linear and many details become
available. We discuss how the friction equation arises in the limit of "small"
B and contrast this result with the standard Taylor expansion resulting in a
second order equation for the velocity of the charge.Comment: 4 figure
- …