2,953 research outputs found

    Size effects in surface reconstructed <100><100> and <110>< 110> silicon nanowires

    Full text link
    The geometrical and electronic structure properties of and and silicon nanowires in the absence of surface passivation are studied by means of density-functional calculations. As we have shown in a recent publication [R. Rurali and N. Lorente, Phys. Rev. Lett. {\bf 94}, 026805 (2005)] the reconstruction of facets can give rise to surface metallic states. In this work, we analyze the dependence of geometric and electronic structure features on the size of the wire and on the growth direction

    Raising and lowering operators and their factorization for generalized orthogonal polynomials of hypergeometric type on homogeneous and non-homogeneous lattice

    Full text link
    We complete the construction of raising and lowering operators, given in a previous work, for the orthogonal polynomials of hypergeometric type on non-homogeneous lattice, and extend these operators to the generalized orthogonal polynomials, namely, those difference of orthogonal polynomials that satisfy a similar difference equation of hypergeometric type.Comment: LaTeX, 19 pages, (late submission to arXiv.org

    Many-body effects in magnetic inelastic electron tunneling spectroscopy

    Full text link
    Magnetic inelastic electron tunneling spectroscopy (IETS) shows sharp increases in conductance when a new conductance channel associated to a change in magnetic structure is open. Typically, the magnetic moment carried by an adsorbate can be changed by collision with a tunneling electron; in this process the spin of the electron can flip or not. A previous one-electron theory [Phys. Rev. Lett. {\bf 103}, 176601 (2009)] successfully explained both the conductance thresholds and the magnitude of the conductance variation. The elastic spin flip of conduction electrons by a magnetic impurity leads to the well known Kondo effect. In the present work, we compare the theoretical predictions for inelastic magnetic tunneling obtained with a one-electron approach and with a many-body theory including Kondo-like phenomena. We apply our theories to a singlet-triplet transition model system that contains most of the characteristics revealed in magnetic IETS. We use two self-consistent treatments (non-crossing approximation and self-consistent ladder approximation). We show that, although the one-electron limit is properly recovered, new intrinsic many-body features appear. In particular, sharp peaks appear close to the inelastic thresholds; these are not localized exactly at thresholds and could influence the determination of magnetic structures from IETS experiments.Analysis of the evolution with temperature reveals that these many-body features involve an energy scale different from that of the usual Kondo peaks. Indeed, the many-body features perdure at temperatures much larger than the one given by the Kondo energy scale of the system.Comment: 10 pages and 6 figure

    On analytic properties of Meixner-Sobolev orthogonal polynomials of higher order difference operators

    Full text link
    In this contribution we consider sequences of monic polynomials orthogonal with respect to Sobolev-type inner product ⟨f,g⟩=⟨uM,fg⟩+λTjf(α)Tjg(α), \left\langle f,g\right\rangle= \langle {\bf u}^{\tt M},fg\rangle+\lambda \mathscr T^j f (\alpha)\mathscr T^{j}g(\alpha), where uM{\bf u}^{\tt M} is the Meixner linear operator, λ∈R+\lambda\in\mathbb{R}_{+}, j∈Nj\in\mathbb{N}, α≤0\alpha \leq 0, and T\mathscr T is the forward difference operator Δ\Delta, or the backward difference operator ∇\nabla. We derive an explicit representation for these polynomials. The ladder operators associated with these polynomials are obtained, and the linear difference equation of second order is also given. In addition, for these polynomials we derive a (2j+3)(2j+3)-term recurrence relation. Finally, we find the Mehler-Heine type formula for the α≤0\alpha\le 0 case

    Raising and lowering operators, factorization and differential/difference operators of hypergeometric type

    Full text link
    Starting from Rodrigues formula we present a general construction of raising and lowering operators for orthogonal polynomials of continuous and discrete variable on uniform lattice. In order to have these operators mutually adjoint we introduce orthonormal functions with respect to the scalar product of unit weight. Using the Infeld-Hull factorization method, we generate from the raising and lowering operators the second order self-adjoint differential/difference operator of hypergeometric type.Comment: LaTeX, 24 pages, iopart style (late submission

    Comentarios de un psiquiatra al discurso del Papa al tribunal de la rota romana (5-II-1987)

    Get PDF
    • …
    corecore