37 research outputs found
Photochemical Degradation Processes of Painting Materials from Cultural Heritage
This chapter describes some recent studies and applications of photochemistry in the physical–chemical characterization of two acrylic paint materials based on phthalocyanines and the study of the photodegradation (photobleaching) processes which could occur, caused by exposure to artificial irradiation, similar as in the museum. The studies in this paper has been conducted on phthalocyanines, these compounds being known as organic colorants in painting. Their color depends not only on the chemical nature of the colorant, which play an important role in the kinetics and degree of aging, but also on the compounds added to the paints (TiO2, micas, arylamide yellow). The techniques used in such studies involve UV–Vis spectroscopy, gloss, and colorimetric measurements, comparing our results with similar ones from the literature
Qualitative Analysis of Phytochemicals from Sea Buckthorn and Gooseberry
This chapter describes in detail recent research results obtained from the qualitative screening of different phytochemicals found in aqueous extracts of sea buckthorn and gooseberry, fruits with important pharmacological effects due to their high content in vitamin C. Phytochemical investigations reveal the presence of active principles (e.g., saponins, flavonoids, alkaloids, carbohydrates, terpenoids, etc.) in sea buckthorn and gooseberry and are accomplished by using well-established standard methods. All these qualitative determinations rely on the visual color change reaction as a basic response to the presence of a specific phytochemical compound. The active principles from sea buckthorn and gooseberry are extracted according to a well-settled extraction method, which involves infusing the fruits in an aqueous medium, for 24 h, at a constant temperature of 4°C
Polymeric Micro- and Nanosystems for Wood Artifacts Preservation
The complex methods of diagnosis investigation of the wood artifacts state and proper materials for their protection against decay are very important goals in cultural heritage. This chapter focuses on the recent trends in micro- and nanostructured polymer systems for application in cultural heritage and on wood preservation, especially. The synthesis, properties, and applications, as well as the relevant analysis techniques to reveal the structures and properties of polymer systems, are discussed, too. To overcome the specific problems that exist for wood artifacts, some aspects should be treated: effects of the environmental factors, as moisture and pollutant absorption into the wood fibers, over-exposure effect of sun or artificial light sources, biological attack of different microorganisms, and the effects of the protective and decorative coatings
Poly(3-HydroxyButyrate-co-3-HydroxyValerate) based Inorganic Consolidate for Firwood Preservation
The aim of this study was to address one of the major challenges of the conservation state of wooden artifacts or artworks namely, the preservation and restoration of wood surfaces. The factors involved in the deterioration of wood are mainly the external factors such as fire, low temperature and microbiological agents, which induce some degradation processes in wood, identified by discoloration, fragility and unsightly appearance. In this study, biodegradable materials based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) and composites based on PHBHV and particles (zinc oxide (ZnO), carbonated hydroxyapatite (CHAp) and its metallic derivatives with silver (AgCHAp) and strontium (SrCHAp) were applied on firwood specimens in order to investigate their consolidation capacity. Colorimetric measurements have confirmed that the chosen treatments did not change the colour of the natural wood. The hardness test revealed that the consolidation system increases the mechanical properties of the samples. The used treatments confer a strong hydrophobic character which prevents exfoliation of the wood samples, as confirmed by the performed water absorption test
An evaluation of pipelines for DNA variant detection can guide a reanalysis protocol to increase the diagnostic ratio of genetic diseases
Clinical exome (CE) sequencing has become a first-tier diagnostic test for hereditary diseases; however, its diagnostic rate is around 30–50%. In this study, we aimed to increase the diagnostic yield of CE using a custom reanalysis algorithm. Sequencing data were available for three cohorts using two commercial protocols applied as part of the diagnostic process. Using these cohorts, we compared the performance of general and clinically relevant variant calling and the efficacy of an in-house bioinformatic protocol (FJD-pipeline) in detecting causal variants as compared to commercial protocols. On the whole, the FJD-pipeline detected 99.74% of the causal variants identified by the commercial protocol in previously solved cases. In the unsolved cases, FJD-pipeline detects more INDELs and non-exonic variants, and is able to increase the diagnostic yield in 2.5% and 3.2% in the re-analysis of 78 cancer and 62 cardiovascular cases. These results were considered to design a reanalysis, filtering and prioritization algorithm that was tested by reassessing 68 inconclusive cases of monoallelic autosomal recessive retinal dystrophies increasing the diagnosis by 4.4%. In conclusion, a guided NGS reanalysis of unsolved cases increases the diagnostic yield in genetic disorders, making it a useful diagnostic tool in medical geneticsWe want to thank the participants for consenting to the use of their data for the study. We would like to thank all technical staff in the genetics service of the Fundación Jiménez Díaz University Hospital for conducting the sequencing and segregation analysis. We also thank Oliver Shaw (IIS-FJD) for editorial assistance. This work was supported by the Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (FIS; PI16/00425, PI19/00321, PI18/00579 and PI20/00851), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036), IIS-FJD BioBank (PT13/0010/0012), Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), Ramón Areces Foundation (4019/012), Conchita Rábago Foundation, and the University Chair UAM-IIS-FJD of Genomic Medicine. R.R. is supported by a postdoctoral fellowship of the Comunidad de Madrid (2019-T2/BMD-13714), L.d.l.F. is supported by the platform technician contract of ISCIII (CA18/00017), IPR is supported by a PhD studentship from the predoctoral program from ISCIII (FI17/ 00192), I.F.I. is supported by a grant from the Comunidad de Madrid (CAM, PEJ-2017- AI/BMD7256), G.N.M. is supported by a grant from the Comunidad de Madrid (PEJ2020-AI/BMD-18610), A.D. is supported by a PhD studentship from the predoctoral program from ISCIII (FI18/00123), B.A. is supported by a Juan Rodes program from ISCIII (JR17/00020), C.R. is supported by a PhD studentship from the Conchita Rabago Foundation and PM and MC are supported by a Miguel Servet program contract from ISCIII (CP16/00116 and CPII17/00006, respectively). The funders played no role in study design, data collection, data analysis, manuscript preparation, and/or publication decision
Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications
Inherited retinal diseases (IRDs), defined by dysfunction or progressive loss of photoreceptors, are disorders characterized by elevated heterogeneity, both at the clinical and genetic levels. Our main goal was to address the genetic landscape of IRD in the largest cohort of Spanish patients reported to date. A retrospective hospital-based cross-sectional study was carried out on 6089 IRD affected individuals (from 4403 unrelated families), referred for genetic testing from all the Spanish autonomous communities. Clinical, demographic and familiar data were collected from each patient, including family pedigree, age of appearance of visual symptoms, presence of any systemic findings and geographical origin. Genetic studies were performed to the 3951 families with available DNA using different molecular techniques. Overall, 53.2% (2100/3951) of the studied families were genetically characterized, and 1549 different likely causative variants in 142 genes were identified. The most common phenotype encountered is retinitis pigmentosa (RP) (55.6% of families, 2447/4403). The most recurrently mutated genes were PRPH2, ABCA4 and RS1 in autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL) NON-RP cases, respectively; RHO, USH2A and RPGR in AD, AR and XL for non-syndromic RP; and USH2A and MYO7A in syndromic IRD. Pathogenic variants c.3386G > T (p.Arg1129Leu) in ABCA4 and c.2276G > T (p.Cys759Phe) in USH2A were the most frequent variants identified. Our study provides the general landscape for IRD in Spain, reporting the largest cohort ever presented. Our results have important implications for genetic diagnosis, counselling and new therapeutic strategies to both the Spanish population and other related populations.This work was supported by the Instituto de Salud Carlos III (ISCIII) of the Spanish Ministry of Health (FIS; PI16/00425 and PI19/00321), Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER, 06/07/0036), IIS-FJD BioBank (PT13/0010/0012), Comunidad de Madrid (CAM, RAREGenomics Project, B2017/BMD-3721), European Regional Development Fund (FEDER), the Organización Nacional de Ciegos Españoles (ONCE), Fundación Ramón Areces, Fundación Conchita Rábago and the University Chair UAM-IIS-FJD of Genomic Medicine. Irene Perea-Romero is supported by a PhD fellowship from the predoctoral Program from ISCIII (FI17/00192). Ionut F. Iancu is supported by a grant from the Comunidad de Madrid (CAM, PEJ-2017-AI/BMD7256). Marta del Pozo-Valero is supported by a PhD grant from the Fundación Conchita Rábago. Berta Almoguera is supported by a Juan Rodes program from ISCIII (JR17/00020). Pablo Minguez is supported by a Miguel Servet program from ISCIII (CP16/00116). Marta Corton is supported by a Miguel Servet program from ISCIII (CPII17/00006). The funders played no role in study design, data collection, data analysis, manuscript preparation and/or publication decisions
Antioxidant Activity and Phytochemical Compounds of Capsicum annuum L.
The benefits of Capsicum annuum L. are important for human health with its anti-inflammatory [...
Investigation of Chromatic Parameters of Some Samples from Constanta Casino
Cultural monuments are subject to a degrading phenomenon induced by several factors, such [...
Nanomaterials Used in Conservation and Restoration of Cultural Heritage: An Up-to-Date Overview
In the last few years, the preservation of cultural heritage has become an important issue globally, due to the fact that artifacts and monuments are continually threatened by degradation. It is thus very important to find adequate consolidators that are capable of saving and maintaining the natural aspect of these objects. This study aims to provide an updated survey of the main nanomaterials used for the conservation and restoration of cultural heritage. In the last few years, besides the classic nanomaterials used in this field, such as metal nanoparticles (copper and silver) and metal oxides (zinc and aluminum), hydroxyapatite and carbonated derivatives, tubular nanomaterials (such as carbon nanotubes) have been used as a potential consolidate material of cultural heritage. Tubular nanomaterials have attracted attention for use in different fields due to their structures, as well as their ability to present multiple walls. These nanotubes have the necessary properties in preserving cultural heritage, such as superior mechanical and elastic strength (even higher than steel), high hydrophobicity (with a contact angle up to 140°), optical properties (high photodegradation protection), large specific surface area (from 50 to 1315 m2/g, depending on the number of walls) for absorption of other nanomaterials and relatively good biocompatibility
In Vitro Cytotoxic Protective Effect of Alginate-Encapsulated Capsaicin Might Improve Skin Side Effects Associated with the Topical Application of Capsaicin
Chronic neuropathic pain, particularly peripheral pain, is a cause of great concern for diabetic patients. Current treatments include numerous agents such as capsaicinoids, a known deterrent of neuropathic pain despite the inconvenience associated with local side effects. In this context, the current work aims to elucidate the potential mechanisms involved in cytotoxicity by capsaicin and proposes an efficient formulation of capsaicin in alginate microcapsules, which significantly reduces side effects from capsaicin topical administration. For this, human dermal fibroblast cells were treated with alginate-microencapsulated capsaicin extracts and screened for potential cytotoxic effects produced by the treatment. Cell viability and morphology were examined, as well as oxidative stress status and anti-inflammatory potential. Our results show that the alginate encapsulated formulation of capsaicin exerted lower cytotoxic effects on human dermal fibroblasts as measured by cell viability and reactive oxygen species (ROS) production. Furthermore, the expression profiles of inflammatory cytokines were significantly altered by the treatment as compared with the control culture