35 research outputs found

    Generation of twenty four induced pluripotent stem cell lines from twenty four members of the Lothian 4 Birth Cohort 1936

    Get PDF
    Cognitive decline is among the most feared aspects of ageing. We have generated induced pluripotent stem cells (iPSCs) from 24 people from the Lothian Birth Cohort 1936, whose cognitive ability was tested in childhood and in older age. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using non-integrating oriP/EBNA1 backbone plasmids expressing six iPSC reprogramming factors (OCT3/4 (POU5F1), SOX2, KLF4, L-Myc, shp53, Lin28, SV40LT). All lines demonstrated STR matched karyotype and pluripotency was validated by multiple methods. These iPSC lines are a valuable resource to study molecular mechanisms underlying individual differences in cognitive ageing and resilience to age-related neurodegenerative diseases

    Inhibition of Apoptosis Blocks Human Motor Neuron Cell Death in a Stem Cell Model of Spinal Muscular Atrophy

    Get PDF
    Spinal muscular atrophy (SMA) is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC) lines generated from two Type I SMA subjects–one produced with lentiviral constructs and the second using a virus-free plasmid–based approach–recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients

    Directed Differentiation of Human Induced Pluripotent Stem Cells into Fallopian Tube Epithelium.

    No full text
    The fallopian tube epithelium (FTE) has been recognized as a site of origin of high-grade serous ovarian cancer (HGSC). However, the absence of relevant in vitro human models that can recapitulate tissue-specific architecture has hindered our understanding of FTE transformation and initiation of HGSC. Here, induced pluripotent stem cells (iPSCs) were used to establish a novel 3-dimensional (3D) human FTE organoid in vitro model containing the relevant cell types of the human fallopian tube as well as a luminal architecture that closely reflects the organization of fallopian tissues in vivo. Modulation of Wnt and BMP signaling directed iPSC differentiation into MĂŒllerian cells and subsequent use of pro-MĂŒllerian growth factors promoted FTE precursors. The expression and localization of MĂŒllerian markers verified correct cellular differentiation. An innovative 3D growth platform, which enabled the FTE organoid to self-organize into a convoluted luminal structure, permitted matured differentiation to a FTE lineage. This powerful human-derived FTE organoid model can be used to study the earliest stages of HGSC development and to identify novel and specific biomarkers of early fallopian tube epithelial cell transformation

    Motor neuron (MN) differentiation from iPSCs.

    No full text
    <p>(<b>A</b>) Schematic representation of MN differentiation from iPSCs out to 10 weeks. (<b>B, C</b> and <b>D</b>) Differentiated human iPSCs are capable of developing into both (<b>B</b>) early, (<b>C</b>) intermediate, and (<b>D</b>) mature MN markers indicative of lineage restriction. (<b>D</b>) Detection of SMN protein in the nuclei (gems) and cytoplasm of choline acetyltransferase (ChAT) positive MNs derived from control iPSCs (83iCTR). Representative images for MN differentiation depicted here are from healthy control subject iPSCs (14iCTR or 83 iCTR). Scale bars: 50 ”m.</p

    Generation and characterization of a new SMA-iPSC line.

    No full text
    <p>(<b>A</b>) Bright field images of the 77iSMA-e.12 SMA line showing typical pluripotent stem cell colony morphology, made by a combination of episomal vectors. Immunostaining shows expression of embryonic stem cell surface antigen SSEA4, Tra-1-60, Tra-1-81, and nuclear Oct4. (<b>B</b>) Quantitative RT–PCR analyses of <i>OCT4, SOX2, NANOG, cMYC, KLF4, LIN28</i> expression in seven clones of 77iSMA iPSCs relative to H1 hESCs. “Endogenous” indicates that primers were included in the 3â€Č untranslated region (UTR) measure expression of the endogenous gene only, whereas “total” indicates that primers in coding regions measure expression of both the endogenous gene and the transgene if present<b>.</b> Gene expression differences were not significant (ns) by one-way ANOVA and data are represented as mean ± SD. (<b>C</b>) 77iSMA and 13iSMA iPSCs show the expected lack of <i>SMN1</i> expression and maintenance of <i>SMN2</i> expression. (<b>D</b>) Hematoxylin and eosin (HE) histology from teratoma tissue in nude mice kidney capsule grown for 6 weeks, showing striated muscle (mu) and a vessel (ve) of mesodermal origin, endodermal-epithelia (en-ep) of intestinal character, and ectodermal epithelia of peridermal (p-ep) character. Scale bars: 100 ”m.</p

    Activation of caspase-8 in SMA MN cultures.

    No full text
    <p>(<b>A</b>) Western blot analysis of MN patterned SMA-iPSCs cell lysates at 8 weeks show reduced SMN and MN markers Islet-1 and HB9, but increased activation of caspase-8 compared to control iPSCs. There was no difference in expression levels of Bax, Bcl-2, and AIF. GAPDH was used as a loading control. (<b>B</b>) Immunocytochemistry detected an increase in cleaved caspase-8 in 13iSMA MN cultures<b>.</b> White arrows indicate doubled labeled HB9 positive MNs that are also positive for cleaved caspase-8. (<b>C</b>) An increase in caspase-8 activation in 13iSMA MNs was confirmed with the Caspase Glo-8 assay, measuring caspase-8 activity by release of luminescence upon activation of caspase-8 and a cleavage of a target peptide. Data are represented as mean ± SEM, n = 3 experiments.</p

    SMA MN cultures display a degenerative phenotype.

    No full text
    <p>(<b>A</b>) At 10 weeks of differentiation, both SMA patient-iPSC lines show a significant reduction of SMI-32+ MNs compared to both control iPSC lines. However, the Tuj1+ (ÎČIII-tubulin) neuronal population is unaffected. These data are represented as mean ± SEM and are quantified in (<b>B</b> and <b>C</b>); the graphs are represented as percent positive TuJ1 or SMI-32 cells of the total Hoechst positive population. There was no significant difference in Tuj1 positive neuron numbers observed between the control and SMA cells at 3, 7 and 10 weeks of MN patterning. (<b>C</b>) There is a reduction of total cell body area and total number of processes in the SMA cell lines at late stages of differentiation compared to control iPSCs. (<b>D</b>) Meta-analysis of SMI-32 and TuJ1 counts confirms a significant reduction in SMI-32+ MNs in SMA cells. (<b>C</b> and <b>D</b>) Data are represented according to the longitudinal differentiation equation (<i><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039113#s4" target="_blank">Materials and Methods</a></i>) as mean ± SEM, n = 4 independent experiments. Scale bars  = 50 ”m. * p<0.05, ** p<0.01.</p
    corecore