19 research outputs found

    Oncolytic Adenoviruses for Cancer Therapy

    Get PDF
    Many immuno-therapeutic strategies are currently being developed to fight cancer. In this scenario, oncolytic adenoviruses (Onc.Ads) have an interesting role for their peculiar tumor selectivity, safety, and transgene-delivery capability. The major strength of the Onc.Ads is the extraordinary immunogenicity that leads to a strong T-cell response, which, together with the possibility of the delivery of a therapeutic transgene, could be more effective than current strategies. In this review, we travel in the adenovirus (Ads) and Onc.Ads world, focusing on a variety of strategies that can enhance Onc.Ads antitumoral efficacy, passing through tumor microenvironment modulation. Onc.Ads-based therapeutic strategies constitute additional weapons in the fight against cancer and appear to potentiate conventional and immune checkpoint inhibitors (ICIs)-based therapies leading to a promising scenario.Peer reviewe

    8-Hydroxy-2-Deoxyguanosine and 8-Iso-Prostaglandin F2α: Putative Biomarkers to assess Oxidative Stress Damage Following Robot-Assisted Radical Prostatectomy (RARP)

    Get PDF
    Objective: Prostate cancer (PCa) is the most common type of cancer. Biomarkers help researchers to understand the mechanisms of disease and refine diagnostic panels. We measured urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-IsoF2α) to assess oxidative stress damage in PCa patients undergoing robot-assisted radical prostatectomy (RARP). Methods: Forty PCa patients were enrolled in the study. Urine was collected before (T0) and 3 months after the RARP procedure (T1). 8-OHdG and 8-IsoF2α were measured through liquid chromatography-tandem mass spectrometry. Sex- and age-matched healthy subjects served as controls (CTRL). Results: At T0, patients exhibited significantly higher levels of 8-OHdG than CTRL (p = 0.026). At T1, 23/40 patients who completed the 3-month follow-up showed levels of 8-OHdG that were significantly lower than at T0 (p = 0.042), and comparable to those of the CTRL subjects (p = 0.683). At T0, 8-Iso-PGF2α levels were significantly higher in PCa patients than in CTRL subjects (p = 0.0002). At T1, 8-Iso-PGF2α levels were significantly lower than at T0 (p < 0.001) and were comparable to those of CTRL patients (p = 0.087). Conclusions: A liquid chromatography-tandem mass spectrometry method reveals enhanced OHdG and 8-Iso-PGF2α in the urine of PCa patients. RARP normalizes such indices of oxidative stress. Large-sized sample studies and long-term follow-ups are now needed to validate these urinary biomarkers for use in the early prevention and successful treatment of PCa

    Systems Biology Approaches for the Improvement of Oncolytic Virus-Based Immunotherapies

    Get PDF
    Oncolytic virus (OV)-based immunotherapy is mainly dependent on establishing an efficient cell-mediated antitumor immunity. OV-mediated antitumor immunity elicits a renewed antitumor reactivity, stimulating a T-cell response against tumor-associated antigens (TAAs) and recruiting natural killer cells within the tumor microenvironment (TME). Despite the fact that OVs are unspecific cancer vaccine platforms, to further enhance antitumor immunity, it is crucial to identify the potentially immunogenic T-cell restricted TAAs, the main key orchestrators in evoking a specific and durable cytotoxic T-cell response. Today, innovative approaches derived from systems biology are exploited to improve target discovery in several types of cancer and to identify the MHC-I and II restricted peptide repertoire recognized by T-cells. Using specific computation pipelines, it is possible to select the best tumor peptide candidates that can be efficiently vectorized and delivered by numerous OV-based platforms, in order to reinforce anticancer immune responses. Beyond the identification of TAAs, system biology can also support the engineering of OVs with improved oncotropism to reduce toxicity and maintain a sufficient portion of the wild-type virus virulence. Finally, these technologies can also pave the way towards a more rational design of armed OVs where a transgene of interest can be delivered to TME to develop an intratumoral gene therapy to enhance specific immune stimuli

    Oncolytic Adenoviral Vector-Mediated Expression of an Anti-PD-L1-scFv Improves Anti-Tumoral Efficacy in a Melanoma Mouse Model

    Get PDF
    Oncolytic virotherapy is an emerging therapeutic approach based on replication-competent viruses able to selectively infect and destroy cancer cells, inducing the release of tumor-associated antigens and thereby recruiting immune cells with a subsequent increase in antitumoral immune response. To increase the anticancer activity, we engineered a specific oncolytic adenovirus expressing a single-chain variable fragment of an antibody against PD-L1 to combine blockage of PD-1/PD-L1 interaction with the antitumoral activity of Onc.Ad5. To assess its efficacy, we infected B16.OVA cells, a murine model of melanoma, with Ad5 Delta 24 -anti-PD-L1-scFv and then co-cultured them with C57BL/6J naive splenocytes. We observed that the combinatorial treatments were significantly more effective in inducing cancer cell death. Furthermore, we assessed the efficacy of intratumoral administrations of Ad5 Delta 24-anti-PD-L1-scFv in C57BL/6J mice engrafted with B16.OVA and compared this treatment to that of the parental Ad5 Delta 24 or placebo. Treatment with the scFv-expressing Onc.Ad induced a marked reduction of tumor growth concerning the parental Onc.Ad. Additionally, the evaluation of the lymphocytic population infiltrating the treated tumor reveals a favorable immune profile with an enhancement of the CD8(+) population. These data suggest that Onc.Ad-mediated expression of immune checkpoint inhibitors increases oncolytic virotherapy efficacy and could be an effective and promising tool for cancer treatments, opening a new way into cancer therapy.Peer reviewe

    Immunophenotyping of peripheral blood cells allows to discriminate MIS-C and Kawasaki disease

    Get PDF
    Background: The pathogenesis of the novel described multisystem inflammatory syndrome in children (MIS-C) and Kawasaki disease (KD) is still debated as it is not clear if they are the same or different nosological entities. However, for both the diseases a rapid and unequivocal diagnosis is mandatory to start the therapy before the onset of severe complications. In this study, we aimed to evaluate the white cell populations in MIS-C and KD as potential markers to discriminate between the two diseases. Methods: We studied white cell populations by flow cytometry in 46 MIS-C and 28 KD patients in comparison to 70 age-matched healthy children. Results: MIS-C patients had a significant lymphopenia that involved both B and T populations while KD patients showed a significant neutrophilia and thrombocythemia. Granulocyte/lymphocyte ratio helped to diagnose both MIS-C and KD with a high diagnostic sensitivity, while a multivariate analysis of granulocyte and T lymphocyte number contributed to discriminate between the two diseases. Conclusions: The relevant lymphopenia observed in MIS-C patients suggests that the disease would be a post-infectious sequel of COVID-19 immunologically amplified by a massive cytokine release, while the significant neutrophilia and thrombocythemia observed in KD confirmed that the disorder has the genesis of a systemic vasculitis. The analysis of a panel of circulating cells may help to early diagnose and to discriminate between the two diseases. Supplementary information: The online version contains supplementary material available at 10.1186/s41231-022-00128-2

    Positive effects of physical activity in autism spectrum disorder: how influences behavior, metabolic disorder and gut microbiota

    Get PDF
    Autism spectrum disorder is a neurodevelopmental disorder characterized by social interactions and communication skills impairments that include intellectual disabilities, communication delays and self-injurious behaviors; often are present systemic comorbidities such as gastrointestinal disorders, obesity and cardiovascular disease. Moreover, in recent years has emerged a link between alterations in the intestinal microbiota and neurobehavioral symptoms in children with autism spectrum disorder. Recently, physical activity and exercise interventions are known to be beneficial for improving communication and social interaction and the composition of microbiota. In our review we intend to highlight how different types of sports can help to improve communication and social behaviors in children with autism and also show positive effects on gut microbiota composition

    Bifidobacterium affects antitumor efficacy of oncolytic adenovirus in a mouse model of melanoma

    Get PDF
    Gut microbiota plays a key role in modulating responses to cancer immunotherapy in melanoma patients. Oncolytic viruses (OVs) represent emerging tools in cancer therapy, inducing a potent immunogenic cancer cell death (ICD) and recruiting immune cells in tumors, poorly infiltrated by T cells. We investigated whether the antitumoral activity of oncolytic adenovirus Ad5D24-CpG (Ad-CpG) was gut microbiota-mediated in a syngeneic mouse model of melanoma and observed that ICD was weakened by vancomycin-mediated perturbation of gut microbiota. Ad-CpG efficacy was increased by oral supplementation with Bifidobacterium, reducing melanoma progression and tumor-infiltrating regulatory T cells. Fecal microbiota was enriched in bacterial species belonging to the Firmicutes phylum in mice treated with both Bifidobacterium and Ad-CpG; furthermore, our data suggest that molecular mimicry between melanoma and Bifidobacterium-derived epitopes may favor activation of cross-reactive T cells and constitutes one of the mechanisms by which gut microbiota modulates OVs response

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Systems Biology Approaches for the Improvement of Oncolytic Virus-Based Immunotherapies

    No full text
    Oncolytic virus (OV)-based immunotherapy is mainly dependent on establishing an efficient cell-mediated antitumor immunity. OV-mediated antitumor immunity elicits a renewed antitumor reactivity, stimulating a T-cell response against tumor-associated antigens (TAAs) and recruiting natural killer cells within the tumor microenvironment (TME). Despite the fact that OVs are unspecific cancer vaccine platforms, to further enhance antitumor immunity, it is crucial to identify the potentially immunogenic T-cell restricted TAAs, the main key orchestrators in evoking a specific and durable cytotoxic T-cell response. Today, innovative approaches derived from systems biology are exploited to improve target discovery in several types of cancer and to identify the MHC-I and II restricted peptide repertoire recognized by T-cells. Using specific computation pipelines, it is possible to select the best tumor peptide candidates that can be efficiently vectorized and delivered by numerous OV-based platforms, in order to reinforce anticancer immune responses. Beyond the identification of TAAs, system biology can also support the engineering of OVs with improved oncotropism to reduce toxicity and maintain a sufficient portion of the wild-type virus virulence. Finally, these technologies can also pave the way towards a more rational design of armed OVs where a transgene of interest can be delivered to TME to develop an intratumoral gene therapy to enhance specific immune stimuli
    corecore